Advertisement

Archiv der Mathematik

, Volume 103, Issue 1, pp 27–37 | Cite as

Krull orders in nilpotent groups

  • Eric Jespers
  • Jan Okniński
Article

Abstract

Noncommutative Krull domains that are determined by submonoids of finitely generated torsion-free nilpotent groups are investigated. A complete description is given in case the group is nilpotent of class two.

Mathematics Subject Classification

Primary 16S36 16U30 20M13 Secondary 16H99 20F18 

Keywords

Krull order Semigroup algebra Nilpotent group 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ara P., del Rio A.: A question of Passman on the symmetric ring of quotients. Israel J. Math. 68, 348–352 (1989)CrossRefMATHMathSciNetGoogle Scholar
  2. 2.
    Brown K.A.: Height one primes of polycyclic group rings. J. London Math. Soc. 32, 426–438 (1985)CrossRefMATHMathSciNetGoogle Scholar
  3. 3.
    L.G. Chouinard II, Krull semigroups and divisor class groups, Can. J. Math. 23 (1981), 1459–1468.Google Scholar
  4. 4.
    Gateva-Ivanova T.: Skew polynomial rings with binomial relations. J. Algebra 185, 710–753 (1996)CrossRefMATHMathSciNetGoogle Scholar
  5. 5.
    Gateva-Ivanova T.: A combinatorial approach to the set-theoretic solutions of the Yang–Baxter equation. J. Math. Phys. 45, 3828–3858 (2004)CrossRefMATHMathSciNetGoogle Scholar
  6. 6.
    Geroldinger A.: Non-commutative Krull monoids: a divisor theoretic approach and their arithmetic. Osaka J. Math. 50, 503–539 (2013)MATHMathSciNetGoogle Scholar
  7. 7.
    R. Gilmer, Commutative Semigroup Rings, Univ. of Chicago Press, 1984.Google Scholar
  8. 8.
    I. Goffa, E. Jespers, and J. Okniński, Primes of height one and a class of Noetherian finitely presented algebras, Int. J. Algebra and Computation 17 (2007), 1465–1491.Google Scholar
  9. 9.
    I. Goffa, E. Jespers, and J. Okniński, Semigroup algebras of submonoids of polycyclic-by-finite groups and maximal orders, Algebras and Representation Theory 12 (2009), 357–363.Google Scholar
  10. 10.
    F. Halter-Koch, Ideal systems, An introduction to multiplicative ideal theory, Monographs and Textbooks in Pure and Applied Mathematics, 211. Marcel Dekker, Inc., New York, 1998.Google Scholar
  11. 11.
    Jespers E., Okniński J.: Nilpotent semigroups and their algebras. J.Algebra 169, 984–1011 (1994)CrossRefMATHMathSciNetGoogle Scholar
  12. 12.
    E. Jespers and J. Okniński, Semigroup algebras and maximal orders, Canad. Math. Bull. 42 (1999), 298–306.Google Scholar
  13. 13.
    E. Jespers and J. Okniński, Monoids and groups of I-type, Algebr. Represent. Theory 8 (2005), 709–729.Google Scholar
  14. 14.
    E. Jespers and J. Okniński, Noetherian Semigroup Algebras, Springer, Dordrecht, 2007.Google Scholar
  15. 15.
    M.I. Kargapolov and Yu.I. Merzljakov, Fundamentals of the Theory of Groups, Springer, 1979.Google Scholar
  16. 16.
    T.Y. Lam, Lectures on Modules and Rings, Springer, New York, 1999.Google Scholar
  17. 17.
    D.S. Passman, The Algebraic Structure of Group Rings, Pure and Applied Mathematics, Wiley-Interscience, New York-London-Sydney, 1977.Google Scholar
  18. 18.
    D. Rogalski and S.J. Sierra, Some noncommutative projective surfaces of GK-dimension 4, Compos. Math. 148 (2012), 1195–1237.Google Scholar
  19. 19.
    Rump W.: A decomposition theorem for square-free unitary solutions of the quantum Yang–Baxter equation. Adv. Math. 193, 40–55 (2005)CrossRefMATHMathSciNetGoogle Scholar
  20. 20.
    Wauters P.: On some subsemigroups of noncommutative Krull rings. Comm. Algebra 12, 1751–1765 (1984)CrossRefMATHMathSciNetGoogle Scholar
  21. 21.
    Yekutieli A., Zhang J.J.: Homological transcendence degree. Proc. London Math. Soc. 93, 105–137 (2006)CrossRefMATHMathSciNetGoogle Scholar

Copyright information

© Springer Basel 2014

Authors and Affiliations

  1. 1.Department of MathematicsVrije Universiteit BrusselBrusselsBelgium
  2. 2.Institute of MathematicsUniversity of WarsawWarsawPoland

Personalised recommendations