Skip to main content
Log in

On the images of horodisks under holomorphic self-maps of the unit disk

  • Published:
Archiv der Mathematik Aims and scope Submit manuscript

Abstract

Suppose that f is a holomorphic self map of the unit disk \({\mathbb{D}}\). Recently several monotonicity results related to the image of smaller disks under f have been proved. These results extend the classical Schwarz lemma in various ways. We prove analogous monotonicity results in the context of Julia’s boundary Schwarz lemma. A horodisk is a disk internally tangent to the unit circle. For positive \({\lambda}\), we denote by \({H_{\lambda}}\) the disk of radius \({\lambda/(1\,+\,\lambda)}\) centered at the point \({1/(1\,+\,\lambda)}\). This is a horodisk that touches the unit circle at the point 1. Suppose that f(1) = 1 (in the sense of radial limit) and denote by \({f^{\prime}(1)}\) the angular derivative. By Julia’s lemma \({f(H_{\lambda})\,\subset H_{{\lambda}f^{\prime}(1)}}\). Let \({\Psi_f(\lambda)\,=\,\inf\,\{\rho > 0 : f(H_{\lambda}) \subset H_\rho\}}\). We show that the function \({\Psi_f(\lambda)/\lambda}\) is a decreasing function of \({\lambda}\) and that \({\lim_{\lambda\,\to\,0+} \Psi_f(\lambda)/\lambda = f^\prime(1)}\). This result implies that the constant \({f^\prime(1)}\) in Julia’s lemma is the best possible.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Beardon A.F.: Repeated compositions of analytic maps, Comput. Methods Funct. Theory 1, 235–248 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  2. Beardon A.F., Minda D.: A multi-point Schwarz–Pick lemma. J. Anal. Math. 92, 81–104 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  3. A.F. Beardon and D. Minda, The hyperbolic metric and geometric function theory, Proceedings of the International Workshop on Quasiconformal Mappings and their Applications, Narosa Publishing House (2007), 9–56.

  4. Betsakos D., Pouliasis S.: Versions of Schwarz lemma for condenser capacity and inner radius. Canadian Math. Bulletin 56, 241–250 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  5. Boas H.P.: Julius and Julia: Mastering the art of the Schwarz lemma, Amer. Math. Monthly 117, 770–785 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  6. R.B. Burckel, An Introduction to Classical Complex Analysis, Vol. 1, Academic Press, 1979

  7. R.B. Burckel, D.E. Marshall, D. Minda, P. Poggi-Corradini, and T.J. Ransford Area, capacity and diameter versions of Schwarz’s lemma, Conform. Geom. Dyn. 12 (2008), 133–152.

  8. C. Carathéodory, Theory of Functions of a Complex Variable, Vol. 2. Second english edition, Chelsea Publ., 1960.

  9. C.C. Cowen and B.D. MacCluer, Composition Operators on Spaces of Analytic Functions, CRC Press, 1995.

  10. V.N. Dubinin, Geometric versions of the Schwarz lemma and symmetrization, (Russian) Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI) 383 (2010), translation in J. Math. Sci. (N. Y.) 178 (2011), 150–157.

  11. Goldberg J.L.: Functions with positive real part in a half-plane. Duke Math. J. 29, 335–339 (1962)

    Article  Google Scholar 

  12. Jackson H.L.: Some remarks on angular derivatives and Julia’s lemma. Canad. Math. Bull 9, 233–241 (1966)

    Article  MATH  MathSciNet  Google Scholar 

  13. P.R. Mercer, Another look at Julia’s lemma, Complex Variables Theory Appl. 43 (2000), 129–138.

  14. J.H. Shapiro, Composition Operators and Classical Function Theory, Springer-Verlag, 1993.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dimitrios Betsakos.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Betsakos, D. On the images of horodisks under holomorphic self-maps of the unit disk. Arch. Math. 102, 91–99 (2014). https://doi.org/10.1007/s00013-013-0600-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00013-013-0600-6

Mathematics Subject Classification (1991)

Keywords

Navigation