Skip to main content
Log in

A weighted Hardy inequality and nonexistence of positive solutions

  • Published:
Archiv der Mathematik Aims and scope Submit manuscript

Abstract

In this article, we prove that the following weighted Hardy inequality

$$\begin{array}{ll}\big(\frac{|{d-p}|}{p}\big)^{p}\, \int\limits_{\Omega}\, \frac{|{u}|^{p}}{|{x}|^{p}}\;d\mu \\ \quad \quad \le \int\limits_{\Omega}\,|{\nabla u}|^{p}\;d\mu+ \big(\frac{|{d-p}|}{p}\big)^{p-1}\,\textrm{sgn}(d-p)\,\int\limits_{\Omega}|{u}|^{p}\,\frac{(x^{t}Ax)^{p/2}}{|{x}|^{p}}\; d\mu \quad \quad \quad (1) \end{array}$$

holds with optimal Hardy constant \({\big(\frac{|d-p|}{p}\big)^{p}}\) for all \({u \in W^{1,p}_{\mu,0}(\Omega)}\) if the dimension d ≥ 2, 1 < p < d, and for all \({u \in W^{1,p}_{\mu,0}(\Omega{\setminus}\{0\})}\) if p > d ≥ 1. Here we assume that Ω is an open subset of \({\mathbb{R}^{d}}\) with \({0 \in \Omega}\) , A is a real d × d-symmetric positive definite matrix, c > 0, and

$$ d \mu: = \rho(x) \,dx \qquad \textrm{with} \quad \rho(x) = c \cdot \exp(-\frac{1}{p}(x^{t}Ax)^{p/2}), \quad x \in\Omega.\quad \quad (2) $$

If p > d ≥ 1, then we can deduce from (1) a weighted Poincaré inequality on \({W^{1,p}_{\mu,0}(\Omega \setminus\{0\})}\) . Due to the optimality of the Hardy constant in (1), we can establish the nonexistence (locally in time) of positive weak solutions of a p-Kolmogorov parabolic equation perturbed by a singular potential in dimension d = 1, for 1 < p <  + ∞, and when Ω =  ]0, + ∞[.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aguilar Crespo J.A., Peral Alonso I.: Global behavior of the Cauchy problem for some critical nonlinear parabolic equations. SIAM J. Math. Anal. 31, 1270–1294 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  2. P. Baras and J. A. Goldstein, The heat equation with a singular potential, Trans. Amer. Math. Soc. 284 (1984), 121–139.

    Google Scholar 

  3. H. Brezis, Analyse fonctionnelle, Collection Mathématiques Appliquées pour la Maîtrise. [Collection of Applied Mathematics for the Master’s Degree], Masson, Paris, 1983, Théorie et applications. [Theory and applications].

  4. X. Cabré and Y. Martel, Existence versus explosion instantanée pour des équations de la chaleur linéaires avec potentiel singulier, C. R. Acad. Sci. Paris Sér. I Math. 329 (1999), 973–978.

  5. DiBenedetto E.: Degenerate parabolic equations, Universitext. Springer- Verlag, New York (1993)

    Book  Google Scholar 

  6. V. A. Galaktionov, On nonexistence of Baras-Goldstein type without positivity assumptions for singular linear and nonlinear parabolic equations, Tr. Mat. Inst. Steklova 260 (2008), 123–143.

    Google Scholar 

  7. J. P. García Azorero and I. Peral Alonso, Hardy inequalities and some critical elliptic and parabolic problems, J. Differential Equations 144 (1998), 441–476.

  8. G. R. Goldstein, J. A. Goldstein, and A. Rhandi, Kolmogorov equations perturbed by an inverse-square potential, Discrete Contin. Dyn. Syst. Ser. S 4 (2011), 623–630.

    Google Scholar 

  9. G. R. Goldstein, J. A. Goldstein, and A. Rhandi, Weighted Hardy’s inequality and the Kolmogorov equation perturbed by an inverse-square potential, Applicable Analysis, doi:10.1080/00036811.2011.587809 (2011), 1–15.

  10. Goldstein J.A., Kombe I.: Nonlinear degenerate prabolic equations with singular lower-order term. Adv. Differential Equations 8, 1153–1192 (2003)

    MathSciNet  MATH  Google Scholar 

  11. Hardy G.H.: Note on a theorem of Hilbert. Math. Z. 6, 314–317 (1920)

    Article  MathSciNet  MATH  Google Scholar 

  12. E. Mitidieri, A simple approach to Hardy inequalities, Mat. Zametki 67 (2000), no. 4, 563–572.

    Google Scholar 

  13. D. S. Mitrinović, J. E. Pečarić, and A. M. Fink, Inequalities involving functions and their integrals and derivatives, Mathematics and its Applications (East European Series), vol. 53, Kluwer Academic Publishers Group, Dordrecht, 1991.

  14. M. H. Protter and H. F. Weinberger, Maximum principles in differential equations, Springer-Verlag, New York, 1984, Corrected reprint of the 1967 original.

  15. Sturm C.: Mémoir sur une classe d’équations à différences partielles. J. Math. Pures Appl. 1, 373–444 (1836)

    Google Scholar 

  16. J. M. Tölle, Uniqueness of weighted Sobolev spaces with weakly differentiable weights, to appear in J. Funct. Anal. (in press) (2012), 23.

  17. Z. Wu, J. Zhao, J. Yin, and H. Li, Nonlinear diffusion equations, World Scientific Publishing Co. Inc., River Edge, NJ, 2001, Translated from the 1996 Chinese original and revised by the authors.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Hauer.

Additional information

Both authors have been supported by the DAAD-MIUR grant, Project Vigoni-ID 54710868.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hauer, D., Rhandi, A. A weighted Hardy inequality and nonexistence of positive solutions. Arch. Math. 100, 273–287 (2013). https://doi.org/10.1007/s00013-013-0484-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00013-013-0484-5

Mathematics Subject Classification (2010)

Keywords

Navigation