Advertisement

Archiv der Mathematik

, Volume 99, Issue 6, pp 547–556 | Cite as

Essential norms of composition operators between Bloch type spaces in the polydisk

  • Zhong-Shan Fang
  • Ze-Hua Zhou
Article

Abstract

In 2010, Ruhan Zhao obtained the essential norms of composition operators between Bloch type spaces in the disk by the nth power of the induced analytic function. This paper will generalize Zhao’s results to the polydisk. Unlike the case of the composition operators on the unit disk, the essential norms are different for the cases \({p \in (0,1)}\) and p ≥ 1.

Mathematics Subject Classifcation (2010)

Primary 47B38 Secondary 47B33 45P05 47G10 

Keywords

Composition operator Bloch type space Essential norm Polydisk Several complex variables 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Cowen C. C., MacCluer B. D.: Composition Operators on Spaces of Analytic Functions. CRC Press, Boca Raton, FL (1995)MATHGoogle Scholar
  2. 2.
    Fang Z. S., Zhou Z. H.: Differences of composition operators on the space of bounded analytic functions in the polydisc. Bull. Aust. Math. Soc. 79, 465–471 (2009)MathSciNetMATHCrossRefGoogle Scholar
  3. 3.
    Madigan K. M.: Composition operators on analytic Lipschitz spaces. Proc. Amer. Math. Soc. 119, 465–473 (1993)MathSciNetMATHCrossRefGoogle Scholar
  4. 4.
    Madigan K., Matheson A.: Compact composition operators on the Bloch space. Trans. Amer. Math. Soc. 347, 2679–2687 (1995)MathSciNetMATHCrossRefGoogle Scholar
  5. 5.
    MacCluer B., Zhao R.: Essential norms of weighted composition operators between Bloch type spaces. Rocky Mountain J. Math. 33, 1437–1458 (2003)MathSciNetMATHCrossRefGoogle Scholar
  6. 6.
    Montes-Rodriguez A.: The essential norm of a composition operator on the Bloch spaces. Pacific J. Math. 188, 339–351 (1999)MathSciNetMATHCrossRefGoogle Scholar
  7. 7.
    Montes-Rodriguez A.: Weighted composition operators on weighted Banach spaces of analytic functions. J. London Math. Soc. 61, 872–884 (2000)MathSciNetMATHCrossRefGoogle Scholar
  8. 8.
    S. Stevic, R. Y. Chen, and Z. H. Zhou, Weighted composition operators between Bloch-type spaces in the polydisk, Sbornik Mathematics. 201 (2010), 289–319; Mathematicheskiĭmath Sbornik (a Russian Journal), 201 (2010), 131–160.Google Scholar
  9. 9.
    Shapiro J. H.: Composition Operators and Classical Function Theory. Springer-Verlag, New York (1993)MATHCrossRefGoogle Scholar
  10. 10.
    Shapiro J. H.: The essential norm of a composition operator. Annals Math. 125, 375–404 (1987)MATHCrossRefGoogle Scholar
  11. 11.
    Stević S.: On new Bloch-type spaces. Appl. Math. Comput. 215, 841–849 (2009)MathSciNetMATHCrossRefGoogle Scholar
  12. 12.
    Wulan H. C., Zheng D. C., Zhu K. H.: Compact composition operators on BMO and the Bloch space. Proc. Amer. Math. Soc. 137, 3861–3868 (2009)MathSciNetMATHCrossRefGoogle Scholar
  13. 13.
    Xiao J.: Composition operators associated with Bloch-type spaces. Complex Variables Theory Appl. 46, 109–121 (2001)MathSciNetMATHCrossRefGoogle Scholar
  14. 14.
    Zhao R. H.: Essential norms of composition operators between Bloch type spaces. Proc. Amer. Math. Soc. 138, 2537–2546 (2010)MathSciNetMATHCrossRefGoogle Scholar
  15. 15.
    Z. H. Zhou and Y. Liu, The essential norms of composition operators between generalized Bloch spaces in the polydisk and their applications, Journal of Inequalities and Applications, 2006 (2006), 22p., Article ID 90742.Google Scholar
  16. 16.
    Zhou Z. H., Shi J.H.: Compact composition operators on the Bloch space in polydisk. Science in China (Series A) 44, 286–291 (2001)MathSciNetMATHCrossRefGoogle Scholar
  17. 17.
    Zhou Z.H., Shi J.H.: Composition operators on the Bloch space in polydisk. Complex Variables 46, 73–88 (2001)MathSciNetMATHCrossRefGoogle Scholar
  18. 18.
    Zhou Z. H., Shi J. H.: Compactness of composition operators on the Bloch space in classical bounded symmetric domains. Michigan Math. J. 50, 381–405 (2002)MathSciNetMATHCrossRefGoogle Scholar
  19. 19.
    Zhu K. H.: Operator Theory in Function Spaces. Marcel Dekker, New York (1990)Google Scholar

Copyright information

© Springer Basel 2012

Authors and Affiliations

  1. 1.Department of MathematicsTianjin Polytechnic UniversityTianjinPeople’s Republic of China
  2. 2.Department of MathematicsTianjin UniversityTianjinPeople’s Republic of China

Personalised recommendations