Advertisement

Archiv der Mathematik

, Volume 98, Issue 6, pp 583–590 | Cite as

Strongly transitive multiple trees

  • Katrin Tent
Article
  • 85 Downloads

Abstract

We give an amalgamation construction of free multiple trees with a strongly transitive automorphism group. The construction shows that any partial codistance function on a tuple of finite trees can be extended to yield strongly transitive multiple trees.

Mathematics Subject Classification

20B27 51J99 03C98 

Keywords

Strong transitivity Multiple trees BN-pairs Free constructions 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    P. Abramenko and K. Brown, Buildings. Theory and Applications, Graduate Texts in Mathematics, Vol. 248, Springer (2008)Google Scholar
  2. 2.
    Bux K.-U., Wortman K.: Finiteness properties of arithmetic groups over function fields. Invent. Math. 167, 55–378 (2007)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Bux K.-U., Wortman K.: Connectivity properties of horospheres in Euclidean buildings and applications to finiteness properties of discrete groups. Invent. Math. 185, 395–419 (2011)MathSciNetMATHCrossRefGoogle Scholar
  4. 4.
    P.-E. Caprace and N. Monod, A lattice in more than two Kac–Moody groups is arithmetic, http://arxiv.org/abs/0812.1383
  5. 5.
    Harder G.: Minkowskische Reduktionstheorie über Funktionenkörpern. Invent. Math. 7, 33–54 (1969)MathSciNetMATHCrossRefGoogle Scholar
  6. 6.
    M. Ronan and J. Tits, Twin trees I. Invent. Math. (1994), 463–479.Google Scholar
  7. 7.
    M. Ronan and J. Tits, Twin trees II: local structure and a universal construction, Israel Journal of Mathematics (1999), 349–377.Google Scholar
  8. 8.
    Ronan M.: Multiple trees. J. Algebra 271, 673–697 (2004)MathSciNetMATHCrossRefGoogle Scholar
  9. 9.
    On polygons, twin trees and CAT(1)-spaces, in: Pure and Applied Mathematics Quarterly Volume 7, Number 3 (Special Issue: In honor of Professor Jacques Tits) 1023–1038, 2011.Google Scholar
  10. 10.
    K. Tent and M. Ziegler , A Course in Model theory, Lecture Notes in Logic, Cambridge University Press, 2012.Google Scholar

Copyright information

© Springer Basel AG 2012

Authors and Affiliations

  1. 1.Mathematisches InstitutUniversität MünsterMünsterGermany

Personalised recommendations