Archiv der Mathematik

, Volume 98, Issue 5, pp 427–431 | Cite as

Contact Moishezon threefolds with second Betti number one

Open Access


We prove that the only contact Moishezon threefold having second Betti number equal to one is the projective space.

Mathematics Subject Classification

Primary 32J17 53D10 Secondary 14J30 


Complex contact manifold Moishezon space Threefold Betti number 



The first named author was supported by a Maria Skłodowska-Curie Outgoing Fellowship “Contact Manifolds.” He also would like to thank the University of Bayreuth for invitation, support of his visit and providing a nice and stimulating atmosphere for research.

Open Access

This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution, and reproduction in any medium, provided the original author(s) and the source are credited.


  1. 1.
    Beauville A.: Fano contact manifolds and nilpotent orbits. Comment. Math. Helv. 73, 566–583 (1998)MathSciNetMATHCrossRefGoogle Scholar
  2. 2.
    J. Buczyński, Algebraic Legendrain varieties, Dissertationes Math. (Rozprawy Mat.), 467:86, 2009. Ph.D. thesis, Institute of Mathematics, Warsaw University, (2008).Google Scholar
  3. 3.
    Buczyński J.: Duality and integrability on contact Fano manifolds. Doc. Math. 15, 821–841 (2010)MathSciNetMATHGoogle Scholar
  4. 4.
    Campana F.: Remarques sur le revêtement universel des variétés kählériennes compactes. Bull. Soc. Math. France 122, 255–284 (1994)MathSciNetMATHGoogle Scholar
  5. 5.
    J.-P. Demailly, On the Frobenius integrability of certain holomorphic p-forms, Complex geometry (Göttingen, 2000), volume in honour of H. Grauert, eds. I. Bauer et al., Springer, Berlin, 2002, 93–98Google Scholar
  6. 6.
    K. Frantzen and T. Peternell, On the bimeromorphic geometry of compact complex contact threefolds, Classification of algebraic varieties, EMS Ser. Congr. Rep. 277–288, Europ. Math. Soc. Zürich 2011.Google Scholar
  7. 7.
    Kebekus S.: Lines on contact manifolds. J. Reine Angew. Math. 539, 167–177 (2001)MathSciNetMATHCrossRefGoogle Scholar
  8. 8.
    Kebekus S.: Lines on contact manifolds, II. Comp. Math. 141, 227–252 (2005)MathSciNetMATHCrossRefGoogle Scholar
  9. 9.
    J. Kollár, Flips, flops, minimal models, etc, Surveys in differential geometry (Cambridge, MA, 1990), 113–199 Lehigh Univ., Bethlehem, PA 1991.Google Scholar
  10. 10.
    J. Kollár, Rational curves on algebraic varieties, Erg. d. Math. 3. Folge, Band 32, Springer 1996.Google Scholar
  11. 11.
    Kebekus S. et al.: Projective contact manifolds. Invent. Math. 142, 1–15 (2000)MathSciNetMATHCrossRefGoogle Scholar
  12. 12.
    LeBrun C.: Fano manifolds, contact structures, and quaternionic geometry. Internat. J. Math. 6, 419–437 (1995)MathSciNetMATHCrossRefGoogle Scholar
  13. 13.
    LeBrun C., Salamon S.: Strong rigidity of positive quaternion-Käbler manifolds. Inv. Math. 118, 109–132 (1995)MathSciNetCrossRefGoogle Scholar
  14. 14.
    R. S. Palais. Seminar on the Atiyah-Singer index theorem, with contributions by M. F. Atiyah, A. Borel, E. E. Floyd, R. T. Seeley, W. Shih and R. Solovay. Annals of Mathematics Studies, No. 57. Princeton University Press, Princeton 1965.Google Scholar
  15. 15.
    J. Wiśniewski, Lines and conics on Fano contact manifolds, (2000)
  16. 16.
    Ye Y.-G.: A note on complex projective threefolds admitting holomorphic contact structures. Inv. Math. 115, 311–314 (1994)MATHCrossRefGoogle Scholar

Copyright information

© The Author(s) 2012

Authors and Affiliations

  1. 1.Institute of MathematicsPolish Academy of SciencesWarszawaPoland
  2. 2.Mathematisches InstitutUniversität BayreuthBayreuthGermany

Personalised recommendations