Archiv der Mathematik

, Volume 98, Issue 4, pp 307–315 | Cite as

Distribution of the coefficients of modular forms and the partition function

  • Shi-Chao Chen


Let be an odd prime and j, s be positive integers. We study the distribution of the coefficients of integer and half-integral weight modular forms modulo an odd positive integer M. As an application, we investigate the distribution of the ordinary partition function p(n) modulo j and prove that for each integer 1 ≤ r <  j ,
$$\sharp\{1\le n\le X\ |\ p(n)\equiv r\pmod{\ell^j} \}\gg_{s,r,\ell^j} \frac{\sqrt X}{\log X}(\log\log X)^s.$$

Mathematics Subject Classification

Primary 11P83 Secondary 11F33 


Modular forms The ordinary partition function 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ahlgren S.: The Partition Function Modulo Composite Integers M. Math. Ann. 318, 795–803 (2000)MathSciNetMATHCrossRefGoogle Scholar
  2. 2.
    Ahlgren S., Boylan M.: Arithmetic Properties of the Partition Function. Invent. Math. 153, 487–502 (2003)MathSciNetMATHCrossRefGoogle Scholar
  3. 3.
    Ahlgren S., Boylan M.: Coefficients of Half-integral Weight Modular Forms Modulo j. Math. Ann. 331, 219–239 (2005)MathSciNetMATHCrossRefGoogle Scholar
  4. 4.
    Ahlgren S., Ono K.: Congruence Properties for the Partition Function. Proc. Nat. Acad. Sci. 98, 12882–12884 (2001)MathSciNetMATHCrossRefGoogle Scholar
  5. 5.
    Atkin A.O.L.: Multiplicative Congruence Properties and Density Problems for p(n). Proc. London Math. Soc. 18, 563–576 (1968)MathSciNetMATHCrossRefGoogle Scholar
  6. 6.
    Bruinier J., Ono K.: Coefficents of Half-integral Weight Modular Forms. J. Number Theory 99, 164–179 (2003)MathSciNetMATHCrossRefGoogle Scholar
  7. 7.
    Bruinier J., Ono K.: Coefficents of Half-integral Weight Modular Forms (Corrigendum). J. Number Theory 104, 378–379 (2004)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Kløve T.: Recurrence Formulae for the Coefficients of Modular Forms and Congruences for the Partition Function and for the Coefficients of \({j(\tau), (j(\tau)-1728)^\frac{1}{2}}\) and \({j(\tau)^\frac{1}{3}}\) . Math. Scand. 23, 133–159 (1969)MathSciNetGoogle Scholar
  9. 9.
    Koblitz N.: Introduction to Elliptic Curves and Modular Forms. Springer-Verlag, New York (1984)MATHCrossRefGoogle Scholar
  10. 10.
    Kolberg O.: Note on the Partity of the Partition Function. Math. Scand. 7, 377–378 (1959)MathSciNetGoogle Scholar
  11. 11.
    Ono K.: Distribution of the Partition Function Modulo m. Ann. of Math. 151, 293–307 (2000)MathSciNetMATHCrossRefGoogle Scholar
  12. 12.
    K. Ono, The Web of Modularity: Arithmetic of the Coefficients of Modular Forms and q-series, CBMS Regional Conf. Series in Math. Vol.102, Amer. Math. Soc., 2004.Google Scholar
  13. 13.
    Penniston D.: The p a−regular Partition Function Modulo p j. J. Number Theory 94, 320–325 (2002)MathSciNetMATHCrossRefGoogle Scholar
  14. 14.
    Newman M.: Periodicity Modulo m and Divisibility Properties of the Partition Function. Trans. Amer. Math. Soc. 97, 225–236 (1960)MathSciNetMATHGoogle Scholar
  15. 15.
    J.-L. Nicolas, Parité des Valuers de la Fonction de Partition p(n) et Anatomie des Entiers, preprint.Google Scholar
  16. 16.
    Serre J.-P.: Divisibilité de Certaines Fonctions Arithmétiques. L’Ensein. Math. 22, 227–260 (1976)MATHGoogle Scholar

Copyright information

© Springer Basel AG 2012

Authors and Affiliations

  1. 1.Department of Mathematics and Information Sciences, Institute of Contemporary MathematicsHenan UniversityKaifengPeople’s Republic of China

Personalised recommendations