Archiv der Mathematik

, Volume 97, Issue 5, pp 495–497 | Cite as

A note on the degree of symmetry of exotic spheres



We use an explicit generator of π 6(S 3) to construct a homotopy 10-sphere with an effective SO(4) action that does not bound a parallelizable manifold.

Mathematics Subject Classification (2010)

Primary 57S15 Secondary 57R60 


Smooth actions Exotic spheres 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bredon G.E.: Introduction to compact transformation groups. Academic Press, New York (1972)MATHGoogle Scholar
  2. 2.
    Durán C.: Pointed Wiedersehen Metrics on Exotic Spheres and Diffeomorphisms of S 6. Geom. Dedicata 88, 199–210 (2001)MathSciNetMATHCrossRefGoogle Scholar
  3. 3.
    Durán C., Rigas A.: Equivariant homotopy and deformations of diffeomorphisms. Differential Geometry Appl. 27, 206–211 (2009)MATHCrossRefGoogle Scholar
  4. 4.
    Kervaire M., Milnor J.: Groups of homotopy spheres: I. Ann. of Math. 77, 504–537 (1963)MathSciNetMATHCrossRefGoogle Scholar
  5. 5.
    Schultz R.: Circle actions on homotopy spheres bounding plumbing manifolds. Proc. Amer. Soc. 36, 297–300 (1972)MATHCrossRefGoogle Scholar
  6. 6.
    Straume E.: Compact differentiable transformation groups on exotic spheres. Math. Ann. 299, 355–389 (1994)MathSciNetMATHCrossRefGoogle Scholar
  7. 7.
    E. Straume, Private communication.Google Scholar

Copyright information

© Springer Basel AG 2011

Authors and Affiliations

  1. 1.IMECC-UnicampCidade UniversitáriaCampinasBrazil

Personalised recommendations