Archiv der Mathematik

, 97:391 | Cite as

Neighbourhoods and isotopies of knots in contact 3-manifolds



We prove a neighbourhood theorem for arbitrary knots in contact 3-manifolds. As an application we show that two topologically isotopic Legendrian knots in a contact 3-manifold become Legendrian isotopic after suitable stabilisations.

Mathematics Subject Classification (2010)

53D10 57M25 57R52 


Legendrian knot Legendrian stabilisation Contact manifold Isotopy 


  1. 1.
    K. Dymara, Legendrian knots in overtwisted contact structures, arXiv: math. GT/0410122.Google Scholar
  2. 2.
    J. B. Etnyre, Legendrian and transversal knots, Handbook of Knot Theory, Elsevier, Amsterdam (2005), 105–185.Google Scholar
  3. 3.
    Fuchs D., Tabachnikov S.: Invariants of Legendrian and transverse knots in the standard contact space. Topology 36, 1025–1053 (1997)MathSciNetMATHCrossRefGoogle Scholar
  4. 4.
    H. Geiges, An Introduction to Contact Topology, Cambridge Stud. Adv. Math. 109, Cambridge University Press, Cambridge, 2008.Google Scholar
  5. 5.
    Giroux E.: Convexité en topologie de contact. Comment. Math. Helv. 66, 637–677 (1991)MathSciNetMATHCrossRefGoogle Scholar
  6. 6.
    Honda K.: On the classification of tight contact structures I. Geom. Topol. 4, 309–386 (2000)MathSciNetMATHCrossRefGoogle Scholar
  7. 7.
    Traynor L.: Legendrian circular helix links. Math. Proc. Cambridge Philos. Soc. 122, 301–314 (1997)MathSciNetMATHCrossRefGoogle Scholar

Copyright information

© Springer Basel AG 2011

Authors and Affiliations

  1. 1.Department of MathematicsPeking UniversityBeijingPeople’s Republic of China
  2. 2.Mathematisches InstitutUniversität zu KölnCologneGermany

Personalised recommendations