Advertisement

Archiv der Mathematik

, 97:237 | Cite as

Multiplicities of simple modules in the Sp(4, q)-permutation module on P(3, q), q even

  • N. S. Narasimha Sastry
  • R. P. Shukla
Article
  • 59 Downloads

Abstract

In this paper we shall determine the multiplicities of simple modules in characteristic 2 in the Sp(4, q)-permutation module on projective 3-space P(3, q), q = 2 n .

Mathematics Subject Classification (2010)

Primary 20C33 Secondary 16E20 

Keywords

Multiplicities Permutation module Grothendieck group 

References

  1. 1.
    Alperin J.L.: Projective modules for SL(2, 2n). J. Pure Appl. Algebra 15, 219–234 (1979)MathSciNetMATHCrossRefGoogle Scholar
  2. 2.
    Chastkofsky L., Feit W.: On the projective characters in characteristic 2 of the groups Suz (2m) and Sp4(2n)’. Inst. Hautes Etudes Sci. Publ. Math. 51, 9–36 (1980)MathSciNetMATHCrossRefGoogle Scholar
  3. 3.
    Carter R.W.: Finite groups of Lie types, Conjugacy classes and complex characters. Wiley, Chichester (1985)Google Scholar
  4. 4.
    C. W. Curtis and I. Reiner, Methods of Representation Theory, Vol I, Wiley-Interscience Pub. New York (1981)Google Scholar
  5. 5.
    Enomoto H.: The characters of the finite symplectic group Sp(4, q), q = 2f’. Osaka J. Math. 9, 75–94 (1972)MathSciNetMATHGoogle Scholar
  6. 6.
    J. E. Humphreys, Ordinary and Modular Representations of Chevalley Groups Springer Lecture Notes in Mathematics 528 (1976).Google Scholar
  7. 7.
    S. Lang, Algebra, 3rd ed., Addison-Wesley, 1999.Google Scholar
  8. 8.
    S. E. Payne and J. A. Thas, Finite generalized quadrangles, Advance Publishing Program, Pitman, Boston 1984Google Scholar
  9. 9.
    Sastry N.S.N., Sin P.: The code of regular generalized quadrangle of even order. Proc. Symp. Pure Math. 63, 485–496 (1998)MathSciNetGoogle Scholar
  10. 10.
    Steinberg R.: Representations of Algebraic groups. Nagoya J. Math. 22, 33–56 (1963)MathSciNetMATHGoogle Scholar
  11. 11.
    R. Steinberg, Lectures on Chevalley Groups, Mimeographed Notes, Yale Univ. Math. dept., New Haven, Conn., 1968Google Scholar

Copyright information

© Springer Basel AG 2011

Authors and Affiliations

  1. 1.Stat.-Math. Unit, Indian Statistical InstituteBangaloreIndia
  2. 2.Department of MathematicsUniversity of AllahabadAllahabadIndia

Personalised recommendations