Archiv der Mathematik

, Volume 96, Issue 2, pp 169–175 | Cite as

Limits of Besov norms



Besov spaces \({{\mathbf B}^s_{p,q} ({\mathbb R}^n)}\) with s > 0 can be normed in terms of the differences \({\Delta^m_h f}\) and related moduli of smoothness ω m (f, t) p , where \({0 < s < m \in {\mathbb N}}\). The paper deals with the question what happens if \({s {\uparrow} m}\) and how the outcome is related to the Sobolev spaces \({{\mathbf W}^m_p ({\mathbb R}^n)}\).

Mathematics Subject Classification (2000)



Besov spaces Sobolev spaces Limiting embeddings 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bojarski B., Hajłasz P.: Pointwise inequalities for Sobolev functions and some applications. Studia Math. 106, 77–92 (1993)MathSciNetMATHGoogle Scholar
  2. 2.
    Bourgain J., Brezis H., Mironescu P.: Another look at Sobolev spaces. In: Menaldi, J.L., Rofman, E., Sulem, A. (eds) Optimal Control and Partial Differential Equations, pp. 439–466. IOS Press, Amsterdam (2001)Google Scholar
  3. 3.
    DeVore R., Lorentz G.G.: Constructive Approximation. Springer-Verlag, Berlin (1993)MATHGoogle Scholar
  4. 4.
    Hajłasz P.: Sobolev spaces on an arbitrary metric space. Potential Anal. 5, 403–415 (1996)MathSciNetMATHGoogle Scholar
  5. 5.
    D. D. Haroske and H. Triebel, Embeddings of function spaces: A criterion in terms of differences, Complex Var. Elliptic Equ., to appear.Google Scholar
  6. 6.
    Karadzhov G.E., Milman M., Xiao J.: Limits of higher-order Besov spaces and sharp reiteration theorems. J. Funct. Anal. 221, 323–339 (2005)MathSciNetMATHCrossRefGoogle Scholar
  7. 7.
    Kolyada V.I., Lerner A.K.: On limiting embeddings of Besov spaces. Studia Math. 171, 1–13 (2005)MathSciNetMATHCrossRefGoogle Scholar
  8. 8.
    Maz’ya V., Shaposhnikova T.: On the Bourgain, Brezis, and Mironescu theorem concerning limiting embeddings of fractional Sobolev spaces. J. Funct. Anal. 195, 230–238 (2002)MathSciNetMATHCrossRefGoogle Scholar
  9. 9.
    Milman M.: Notes on limits of Sobolev spaces and the continuity of interpolation scales. Trans. Amer. Math. Soc. 357, 3425–3442 (2005)MathSciNetMATHCrossRefGoogle Scholar
  10. 10.
    S. L. Sobolev, Some Applications of Functional Analysis in Mathematical Physics, Izdat. Leningrad. Gos. Univ., Leningrad, 1950 (in Russian); English translation: Amer. Math. Soc., Providence, 1991.Google Scholar
  11. 11.
    Stein E.M.: Singular Integrals and Differentiability Properties of Functions. Princeton Univ. Press, Princeton (1970)MATHGoogle Scholar
  12. 12.
    Triebel H.: Theory of Function Spaces. Birkhäuser, Basel (1983)CrossRefGoogle Scholar
  13. 13.
    Triebel H.: Theory of Function Spaces III. Birkhäuser, Basel (2006)MATHGoogle Scholar
  14. 14.
    Triebel H.: Function Spaces and Wavelets on Domains, European Math Soc. Publishing House, Zürich (2008)CrossRefGoogle Scholar
  15. 15.
    Triebel H.: Bases in Function Spaces, Sampling, Discrepancy, Numerical Integration. European Math. Soc. Publishing House, Zürich (2010)MATHCrossRefGoogle Scholar
  16. 16.
    Triebel H.: Sobolev-Besov spaces of measurable functions. Studia Math. 201, 69–86 (2010)MathSciNetMATHCrossRefGoogle Scholar
  17. 17.
    Ziemer W.P.: Weakly Differentiable Functions. Springer-Verlag, New York (1989)MATHGoogle Scholar

Copyright information

© Springer Basel AG 2011

Authors and Affiliations

  1. 1.Mathematisches Institut, Fakultät für Mathematik und InformatikFriedrich-Schiller-Universität JenaJenaGermany

Personalised recommendations