Archiv der Mathematik

, Volume 95, Issue 6, pp 509–517 | Cite as

Poincaré duality for p-adic Lie groups



We establish Poincaré duality for continuous group cohomology of p-adic Lie groups with rational coefficients and compare integral structures under this duality.

Mathematics Subject Classification (2000)

Primary 22E41 Secondary 18H10 22E05 


p-adic Lie Groups Group cohomology Duality 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. Huber and G. Kings, A cohomological Tamagawa number formula, to appear Nagoya Math. J.Google Scholar
  2. 2.
    A. Huber, G. Kings, and N. Naumann, Some complements to the Lazard isomorphism, to appear Compositio Math.Google Scholar
  3. 3.
    M. Lazard, Groupes analytiques p-adiques, Publ. IHES. 26, 1965.Google Scholar
  4. 4.
    J. Nekovar, Selmer complexes, Astérisque 310, Soc. Math. de France, 2006.Google Scholar
  5. 5.
    J. Neukirch, A. Schmidt, and K. Wingberg, Cohomology of number fields, Grundlehren der Mathematischen Wissenschaften 323, Springer-Verlag, Berlin, 2000.Google Scholar
  6. 6.
    J.-P. Serre, Cohomologie galoisienne, Lecture Notes in Mathematics 5, 3rd ed., 1965 Springer-Verlag, Berlin-New York 1965.Google Scholar
  7. 7.
    P. Symonds and T. Weigel, Cohomology of p-adic analytic groups. New horizons in pro-p groups, 349–410, Progr. Math. 184, Birkhäuser Boston, Boston, MA, 2000.Google Scholar

Copyright information

© Springer Basel AG 2010

Authors and Affiliations

  1. 1.Mathematisches Institut, Universität FreiburgFreiburgGermany

Personalised recommendations