Archiv der Mathematik

, Volume 94, Issue 2, pp 147–154 | Cite as

On the Selberg orthogonality for automorphic L-functions

  • Muharem Avdispahić
  • Lejla Smajlović


For automorphic L-functions L(s, π) and \({L( s,\pi^{\prime })}\) attached to automorphic irreducible cuspidal representations π and π′ of \({GL_{m}( \mathbb{Q}_{A})}\) and \({GL_{m^{\prime }}(\mathbb{Q}_{A}) }\), we prove the Selberg orthogonality unconditionally for m ≤ 4 and m′ ≤ 4, and under hypothesis H of Rudnik and Sarnak if m > 4 or m′ > 4, without the additional requirement that at least one of these representations be self-contragradient.

Mathematics Subject Classification (2000)

11F03 11M26 11F70 


Automorphic L-functions Rankin-Selberg L-function Selberg’s orthogonality 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Gelbart S.S., Shahidi F.: Boundedness of automorphic L-functions in vertical strips. J. Amer. Math. Soc. 14, 79–107 (2001)MATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Ikehara S.: An extension of Landau’s theorem in the analytic theory of numbers. J. Math. Phys. M. I. T. 10, 1–12 (1931)Google Scholar
  3. 3.
    Jacquet H., Shalika J.A.: On Euler products and the classification of automorphic representations I. Amer. J. Math. 103, 499–558 (1981)MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Jacquet H., Shalika J.A.: On Euler products and the classification of automorphic representations II. Amer. J. Math. 103, 777–815 (1981)MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Jorgenson J., Lang S.: Explicit formulas for regularized products and series, Lecture Notes in Mathematics 1593, pp. 1–134. Springer-Verlag, Berlin-Heidelberg (1994)CrossRefGoogle Scholar
  6. 6.
    Kim H.: Functoriality for the exterior square GL 4 and the symmetric fourth of GL 2, with appendix 1 by D. Ramakrishnan and appendix 2 by H. Kim and P. Sarnak. J. Amer. Math. Soc. 16, 139–183 (2003)MATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Liu J., Wang Y., Ye Y.: A proof of Selberg’s orthogonality for automorphic L-functions. Manuscripta Math. 118, 135–149 (2005)MATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Liu J., Ye Y.: Superposition of zeros of distinct L-functions. Forum Math. 14, 419–455 (2002)MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Liu J., Ye Y.: Perron’s formula and the prime number theorem for automorphic L-functions. Pure Appl. Math. Q. 3, 481–497 (2007)MATHMathSciNetGoogle Scholar
  10. 10.
    Rudnick Z., Sarnak P.: Zeros of principal L-functions and random matrix theory. Duke Math. J. 81, 269–322 (1996)MATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    A. Selberg, Old and new conjectures and results about a class of Dirichlet series, in: Proc. Amalfi Conf. Analytic Number Theory, E. Bombieri et al. (eds.), Universita di Salerno, 1992, 367–385.Google Scholar
  12. 12.
    Shahidi F.: On certain L-functions. Amer. J. Math. 103, 297–355 (1981)MATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Shahidi F.: Fourier transforms of intertwining operators and Plancherel measures for GL(n). Amer. J. Math. 106, 67–111 (1984)MATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Shahidi F.: Local coefficients as Artin factors for real groups. Duke Math. J. 52, 973–1007 (1985)MATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Shahidi F.: A proof of Langlands’ conjecture on Plancherel measures; complementary series for p-adic groups. Ann. of Math. 132, 273–330 (1990)CrossRefMathSciNetGoogle Scholar

Copyright information

© Birkhäuser Verlag Basel/Switzerland 2010

Authors and Affiliations

  1. 1.Department of MathematicsUniversity of SarajevoSarajevoBosnia and Herzegovina

Personalised recommendations