Archiv der Mathematik

, 93:577 | Cite as

Vector variational principle

  • Ewa M. Bednarczuk
  • Dariusz Zagrodny


We prove an Ekeland’s type vector variational principle for monotonically semicontinuous mappings with perturbations given by a convex bounded subset of directions multiplied by the distance function. This generalizes the existing results where directions of perturbations are singletons.

Mathematics Subject Classification (2000)

58E30 58E17 65K10 


Vector variational principle Countably orderable sets Németh approximate solutions Ekeland’s variational principle 


  1. 1.
    Bao T.Q., Mordukhovich B.S.: Variational principles for set-valued mappings with applications to multiobjective optimization. Control Cybernet. 36, 531–562 (2007)MATHMathSciNetGoogle Scholar
  2. 2.
    Bednarczuk E.M., Przybyła M.: The vector-valued variational principle in Banach spaces ordered by cones with nonempty interiors. SIAM J. Optim. 18, 907–913 (2007)MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Cammaroto F., Chinni A.: A complement to Ekeland’s variational principle in Banach spaces. Bull. Pol. Acad. Sci. Math. 44, 29–33 (1996)MATHMathSciNetGoogle Scholar
  4. 4.
    Ekeland I.: On the variational principle. J. Math. Anal. Appl. 47, 324–353 (1974)MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Ekeland I.: Nonconvex minimization problems. Bull. Amer. Math. Soc. 1, 443–474 (1979)MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Fang J.X.: The variational principle and fixed points theorems in certain topological spaces. J. Math. Anal. Appl. 208, 389–412 (1996)Google Scholar
  7. 7.
    Finet C.: Variational principles in partially ordered Banach spaces. J. Nonlinear Convex Anal. 2, 167–174 (2001)MATHMathSciNetGoogle Scholar
  8. 8.
    Finet C., Quarta L., Troestler C.: Vector-valued variational principles. Nonlinear Anal. 52, 197–218 (2003)MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Gajek L., Zagrodny D.: Weierstrass theorem for monotonically semicontinuous functions. Optimization 29, 199–203 (1994)MATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Gajek L., Zagrodny D.: Existence of maximal points with respect to ordered bipreference relations. J. Optim. Theory Appl. 70, 355–364 (1991)MATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Gajek L., Zagrodny D.: Countably orderable sets and their applications in optimization. Optimization 26, 287–301 (1992)MATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Georgiev P.G.: Parametric Ekeland’s variational principle. Appl. Math. Lett. 14, 691–696 (2001)MATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Georgiev P.G.: The strong Ekeland variational principle, the strong drop theorem and applications. J. Math. Anal. Appl. 131, 1–21 (1988)MATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Göpfert A. et al.: Variational methods in partially ordered spaces. Springer-Verlag, New York (2003)MATHGoogle Scholar
  15. 15.
    Göpfert A., Tammer C., Zalinescu C.: On the vectorial Ekeland’s variational principle and minimal point theorems in product spaces. Nonlinear Anal. 39, 909–922 (2000)CrossRefMathSciNetGoogle Scholar
  16. 16.
    Holmes R.B.: Geometric functional analysis and its applications. Springer-Verlag, New York (1975)MATHGoogle Scholar
  17. 17.
    Isac G.: Nuclear cones in product spaces, Pareto efficiency and Ekeland-type variational principle in locally convex spaces. Optimization 53, 253–268 (2004)MATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Isac G., Tammer C.: Nuclear and full nuclear cones in product spaces: Pareto efficiency and Ekeland-type variational principle. Positivity 9, 511–539 (2005)MATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    Németh A.B.: A nonconvex vector minimization problem. Nonlinear Anal. 10, 669–678 (1986)MATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    Oettli W., Théra M.: Equivalents of Ekeland’s principle. Bull. Austral. Math. Soc. 48, 385–392 (1993)MATHCrossRefMathSciNetGoogle Scholar
  21. 21.
    R. Phelps, Convex Functions, Monotone Operators and Differentiability, Lecture Notes in Mathematics 1364, Springer Verlag, Berlin–Heidelberg, 1989.Google Scholar
  22. 22.
    Phelps R.: Support cones in Banach spaces and their applications. Adv. Math. 13, 1–19 (1974)MATHCrossRefMathSciNetGoogle Scholar
  23. 23.
    Rolewicz S.: On a norm scalarization in infinite dimensional Banach Spaces. Control Cybernet. 4, 85–89 (1975)MATHMathSciNetGoogle Scholar
  24. 24.
    Tammer C.: A generalization of Ekeland’s variational principle. Optimization 25, 129–141 (1992)MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Birkhäuser Verlag Basel/Switzerland 2009

Authors and Affiliations

  1. 1.Cardinal Stefan Wyszyński UniversityWarsawPoland
  2. 2.Systems Research InstitutePolish Academy of SciencesWarsawPoland

Personalised recommendations