Advertisement

Archiv der Mathematik

, 93:379 | Cite as

Littlewood’s problem for isochronous oscillators

  • Denis Bonheure
  • Christian Fabry
Article

Abstract

We study the boundedness problem for a class of forced isochronous oscillators.

Mathematics Subject Classification (2000)

Primary: 34B15 34C25 34C11 

Keywords

Isochronous oscillator Boundedness Littlewood’s problem 

References

  1. 1.
    Alonso J.M., Ortega R.: Unbounded solutions of semilinear equations at resonance. Nonlinearity 9, 1099–1111 (1996)MATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    S. V. Bolotin and R. S. MacKay, Isochronous potentials, Localization and energy transfer in nonlinear systems, World Sci, 2003, 217–224.Google Scholar
  3. 3.
    Bonheure D., Fabry C.: Unbounded solutions of forced isochronous oscillators at resonance. Differential Integral Equations 15, 1139–1152 (2002)MATHMathSciNetGoogle Scholar
  4. 4.
    Bonheure D., Fabry C., Smets D.: Existence and non-existence results for periodic solutions of forced isochronous oscillators at resonance. Discrete Contin. Dyn. Syst. 8, 907–930 (2002)MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Capietto A., Dambrosio W., Wang Z.: Coexistence of unbounded and periodic solutions to perturbed damped isochronous oscillators at resonance. Proc. Roy. Soc. Edinburgh Sect. A 138, 15–32 (2008)MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Cheng C., Xu J.: Boundedness of solutions for a class of second-order differential equations. Nonlinear Anal. 68, 1993–2004 (2008)MATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Fabry C., Mawhin J.: Oscillations of a forced asymmetric oscillator at resonance. Nonlinearity 13, 493–505 (2000)MATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Fonda A.: Positively homogeneous Hamiltonian systems in the plane. J. Differential Equations 200, 162–184 (2004)MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Fabry C., Fonda A.: Periodic solutions of perturbed isochronous Hamiltonian systems at resonance. J. Differential Equations 214, 299–325 (2005)MATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Fabry C., Fonda A.: Unbounded motions of perturbed isochronous Hamiltonian systems at resonance. Adv. Nonlinear Stud. 5, 351–373 (2005)MATHMathSciNetGoogle Scholar
  11. 11.
    Kunze M., Kupper T., Liu B.: Boundedness and unboundedness of solutions for reversible oscillators at resonance. Nonlinearity 14, 1105–1122 (2001)MATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Levi M.: Quasiperiodic motions in superquadratic time-periodic potentials. Commun. Math. Phys. 143, 43–83 (1991)MATHCrossRefGoogle Scholar
  13. 13.
    Li X.: Boundedness and unboundedness of solutions for reversible oscillators at resonance. Nonlinear Anal. 65, 514–533 (2006)MATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Littlewood J.E.: Unbounded solutions of y′′ + g(y) = p(t). J. London Math. Soc. 41, 491–496 (1966)MATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Littlewood J.E.: Unbounded solutions of an equation y′′ +  g(y) =  p(t), with p(t) periodic and bounded and g (y)/y → ± ∞ as y → ± ∞. J. London Math. Soc. 41, 457–507 (1966)CrossRefMathSciNetGoogle Scholar
  16. 16.
    Liu B.: Boundedness in asymmetric oscillations. J. Math. Anal. Appl. 231, 355–373 (1999)MATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Liu B.: On Littlewood’s problem for sublinear Duffing equations. Trans. AMS 353, 1567–1585 (2000)CrossRefGoogle Scholar
  18. 18.
    Liu B.: Quasi-periodic solutions of forced isochronous oscillators at resonance. J. Differential Equations 246, 3471–3495 (2009)MATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    B. Liu and X. Wang, Invariant tori and boundedness in asymmetric reversible oscillations. Preprint.Google Scholar
  20. 20.
    Morris G.R.: A case of boundedness in Littlewood’s problem on oscillatory differential equations. Bull. Austral. Math. Soc. 14, 71–93 (1976)MATHCrossRefMathSciNetGoogle Scholar
  21. 21.
    Ortega R.: Boundedness in a piecewise linear oscillator and a variant of the small twist theorem. Proc. London Math. Soc. 3(79), 381–413 (1999)CrossRefGoogle Scholar
  22. 22.
    Si J.-G.: Invariant tori for a reversible oscillator with a nonlinear damping and periodic forcing term. Nonlinear Anal. 64, 1475–1495 (2006)MATHCrossRefMathSciNetGoogle Scholar
  23. 23.
    Wang X.P.: Invariant Tori and Boundedness in Asymmetric Oscillations, Acta Mathematica Sinica. English Series 19, 765–782 (2003)MATHCrossRefGoogle Scholar

Copyright information

© Birkhäuser Verlag Basel/Switzerland 2009

Authors and Affiliations

  1. 1.Département de MathématiqueUniversité libre de BruxellesBrusselsBelgium
  2. 2.Institut de Mathématique, Pure et AppliquéeUniversité Catholique de LouvainLouvain-la-NeuveBelgium

Personalised recommendations