Skip to main content
Log in

Hopf monoids in varieties

  • Published:
Algebra universalis Aims and scope Submit manuscript

Abstract

Commutative varieties provide a natural setting for generalizing Hopf algebra theory over commutative rings, since they satisfy the various conditions identified in the category theoretical analysis of this theory to guarantee for example the existence of all naturally occurring forgetful functors in this context, the existence of universal measuring comonoids and the existence of generalized finite duals. It will be shown in addition, that crucial properties of the latter, known from the case of Hopf algebra theory over commutative rings, can be generalized Hopf algebra theory over a commutative variety. The attempt to generalize its construction leads to a couple of questions concerning properties of the monoidal structure of a commutative variety, which seem to be of a more general interest.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abuhlail, J.Y., Al-Sulaiman, N.: Hopf semialgebras. Commun. Algebra 43, 1241–1278 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  2. Abuhlail, J.Y., Gómez-Torrecillas, J., Wisbauer, R.: Dual coalgebras of algebras over commutative rings. J. Pure Appl. Algebra 153, 107–120 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  3. Adámek, J., Herrlich, H., Strecker, G.E.: Abstract and Concrete Categories. Wiley, New York (1990)

    MATH  Google Scholar 

  4. Aguiar, M., Mahajan, S.: Monoidal functors, species and Hopf algebras. In: CRM Monograph Series , vol. 29. American Mathematical Society, Providence (2010)

  5. Anel, M., Joyal, A.: Sweedler theory of (co)algebras and the bar–cobar constructions. arXiv:1309.6952 (2013)

  6. Banaschewski, B., Nelson, E.: Tensor products and bimorphisms. Can. Math. Bull. 19, 385–402 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bonsangue, M.M., Milius, S., Silva, A.: Sound and complete axiomatizations of coalgebraic language equivalence. ACM Trans. Comput. Log. 14.1(article 7) (2013)

  8. Borceux, F.: Handbook of Categorical Algebra 2. Cambridge University Press, Cambridge (1994)

    Book  MATH  Google Scholar 

  9. Chen, C.Y., Nichols, W.D.: A duality theorem for Hopf module algebras over Dedekind rings. Commun. Algebra 18(10), 3209–3221 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  10. Davey, B.A., Davis, G.: Tensor products and entropic varieties. Algebra Univ. 21, 68–88 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  11. Ésik, Z., Maletti, A.: Simulations of weighted tree automata. In: Domaratzki, M., Salomaa, K. (eds.) Proceedings of the 15th International Conference on Implementation and Application of Automata (CIAA). Lecture Notes in Computer Science, vol. 6482, pp. 321–330. Springer, Berlin (2011)

  12. Hyland, M., López Franco, I., Vasilakopoulou, C.: Hopf measuring comonoids and enrichment. arXiv:1509.07632 (2015)

  13. Kelly, G.M.: Doctrinal adjunction. Lect. Notes Math. 420, 257–280 (1974). (Springer)

    Article  MathSciNet  MATH  Google Scholar 

  14. Kelly, G.M., Street, R.: Review of the elements of 2-categories. Lect. Notes Math. 420, 75–103 (1974). Springer-Verlag

    Article  MathSciNet  MATH  Google Scholar 

  15. Klukovits, L.: On commutative universal algebras. Acta. Sci. Math. (Szeged) 37, 11–15 (1973)

    MathSciNet  MATH  Google Scholar 

  16. Linton, F.E.J.: Autonomous equational categories. J. Math. Mech. 15, 637–642 (1966)

    MathSciNet  MATH  Google Scholar 

  17. Manes, E.G.: Algebraic Theories. Springer, New York (1976)

    Book  MATH  Google Scholar 

  18. Mac Lane, S.: Categories for the Working Mathematician, 2nd edn. Springer, New York (1998)

    MATH  Google Scholar 

  19. Neumann, W.D.: Mal’cev conditions, spectra, and the Kronecker product. J. Aust. Math. Soc. (Ser. A) 25, 103–117 (1978)

    Article  MATH  Google Scholar 

  20. Pareigis, B.: Non-additive ring and module theory I. Publ. Math. Debr. 24, 189–204 (1977)

    MATH  Google Scholar 

  21. Porst, H.-E.: On categories of monoids, comonoids, and bimonoids. Quaest. Math. 31, 127–139 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  22. Porst, H.-E.: The formal theory of Hopf algebras part I. Quaest. Math. 38, 631–682 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  23. Porst, H.-E.: The formal theory of Hopf algebras part II. Quaest. Math. 38, 683–708 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  24. Porst, H.-E.: Hopf monoids in semi-additive varieties. Log. Methods Comput. Sci. 13, 1–13 (2017)

    MathSciNet  Google Scholar 

  25. Porst, H.-E., Street, R.: Generalizations of the Sweedler dual. Appl. Categ. Struct. 24, 619–647 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  26. Romanowska, A., Smith, J.D.H.: On Hopf algebras in entropic Jónsson–Tarski varieties. Bull. Korean Math. Soc. 52, 1587–1606 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  27. Sweedler, M.E.: Hopf Algebras. Benjamin, New York (1969)

    MATH  Google Scholar 

Download references

Acknowledgements

I am grateful to the anonymous referee for his of her constructive criticism, which lead to a considerable improvement of the presentation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hans-E. Porst.

Additional information

Presented by J. Adámek.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Porst, HE. Hopf monoids in varieties. Algebra Univers. 79, 18 (2018). https://doi.org/10.1007/s00012-018-0500-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00012-018-0500-5

Mathematics Subject Classification

Keywords

Navigation