Advertisement

Algebra universalis

, 79:12 | Cite as

Canonical extensions of bounded archimedean vector lattices

  • Guram Bezhanishvili
  • Patrick J. Morandi
  • Bruce Olberding
Article
  • 31 Downloads
Part of the following topical collections:
  1. In memory of Bjarni Jónsson

Abstract

Canonical extensions of Boolean algebras with operators were introduced in the seminal paper of Jónsson and Tarski. The two defining properties of canonical extensions are the density and compactness axioms. While the density axiom can be extended to the setting of vector lattices of continuous real-valued functions, the compactness axiom requires appropriate weakening. This provides a motivation for defining the concept of canonical extension in the category \(\varvec{ bav }\) of bounded archimedean vector lattices. We prove existence and uniqueness theorems for canonical extensions in \(\varvec{ bav }\). We show that the underlying vector lattice of the canonical extension of \(A\in \varvec{ bav }\) is isomorphic to the vector lattice of all bounded real-valued functions on the Yosida space of A, and give an intrinsic characterization of those \(B \in \varvec{ bav }\) that arise as the canonical extension of some \(A \in \varvec{ bav }\).

Keywords

Vector lattice Canonical extension Compact Hausdorff space Continuous real-valued function Functional representation 

Mathematics Subject Classification

06F20 46A40 54D30 

References

  1. 1.
    Adámek, J., Herrlich, H., Strecker, G.E.: Abstract and concrete categories: the joy of cats. Repr. Theory Appl. Categ. 17, 1–507 (2006)MathSciNetzbMATHGoogle Scholar
  2. 2.
    Bezhanishvili, G., Morandi, P.J., Olberding, B.: Bounded Archimedean \(\ell \)-algebras and Gelfand-Neumark-Stone duality. Theory Appl. Categ. 28(16), 435–475 (2013)MathSciNetzbMATHGoogle Scholar
  3. 3.
    Bezhanishvili, G., Morandi, P.J., Olberding, B.: Dedekind completions of bounded Archimedean \(\ell \)-algebras. J. Algebra Appl. 12(1), 1250139 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Bezhanishvili, G., Morandi, P.J., Olberding, B.: A functional approach to Dedekind completions and the representation of vector lattices and \(\ell \)-algebras by normal functions. Theory Appl. Categ. 31(37), 1095–1133 (2016)MathSciNetzbMATHGoogle Scholar
  5. 5.
    Birkhoff, G.: Lattice theory, American Mathematical Society Colloquium Publications, vol. 25, 3rd edn. American Mathematical Society, Providence (1979)Google Scholar
  6. 6.
    Dilworth, R.P.: The normal completion of the lattice of continuous functions. Trans. Amer. Math. Soc. 68, 427–438 (1950)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Gehrke, M., Harding, J.: Bounded lattice expansions. J. Algebra 238(1), 345–371 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Gehrke, M., Jansana, R., Palmigiano, A.: \(\Delta _1\)-completions of a poset. Order 30(1), 39–64 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Gehrke, M., Jónsson, B.: Bounded distributive lattices with operators. Math. Japn. 40(2), 207–215 (1994)MathSciNetzbMATHGoogle Scholar
  10. 10.
    Gehrke, M., Jónsson, B.: Bounded distributive lattice expansions. Math. Scand. 94(1), 13–45 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Gehrke, M., Priestley, H.A.: Canonical extensions and completions of posets and lattices. Rep. Math. Logic 43, 133–152 (2008)MathSciNetzbMATHGoogle Scholar
  12. 12.
    Gillman, L., Jerison, M.: Rings of continuous functions. The University Series in Higher Mathematics. D. Van Nostrand Co., Inc., Princeton, (1960)Google Scholar
  13. 13.
    Jónsson, B., Tarski, A.: Boolean algebras with operators. I. Amer. J. Math. 73, 891–939 (1951)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Lam, T.Y.: A first course in noncommutative rings, graduate texts in mathematics, vol. 131, 2nd edn. Springer, New York (2001)CrossRefGoogle Scholar
  15. 15.
    Luxemburg, W.A.J., Zaanen, A.C.: Riesz Spaces, vol. I. North-Holland Publishing Co., Amsterdam (1971). (North-Holland Mathematical Library)zbMATHGoogle Scholar
  16. 16.
    Yosida, K.: On vector lattice with a unit. Proc. Imp. Acad. Tokyo 17, 121–124 (1941)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Guram Bezhanishvili
    • 1
  • Patrick J. Morandi
    • 1
  • Bruce Olberding
    • 1
  1. 1.Department of Mathematical SciencesNew Mexico State UniversityLas CrucesUSA

Personalised recommendations