Algebra universalis

, 79:3 | Cite as

Varieties whose finitely generated members are free

  • Keith A. Kearnes
  • Emil W. Kiss
  • Ágnes Szendrei
Part of the following topical collections:
  1. In memory of E. Tamás Schmidt


We prove that a variety of algebras whose finitely generated members are free must be definitionally equivalent to the variety of sets, the variety of pointed sets, a variety of vector spaces over a division ring, or a variety of affine vector spaces over a division ring.


Free algebra Abelian algebra Affine algebra Minimal variety 

Mathematics Subject Classification

Primary 08B20 Secondary 08A05 03C35 


  1. 1.
    Burris, S., Sankappanavar, H.P.: A Course in Universal Algebra. Springer, New York (1981)CrossRefzbMATHGoogle Scholar
  2. 2.
    Campion, T ( Varieties where every algebra is free. (version: 2014-03-15). Accessed 7 July 2015
  3. 3.
    Freese, R., McKenzie, R.: Commutator Theory for Congruence Modular Varieties, vol, 125. London Mathematical Society Lecture Note Series. Cambridge University Press, Cambridge (1987)Google Scholar
  4. 4.
    Givant, S.: Universal Horn classes categorical or free in power. Ann. Math. Logic 15, 1–53 (1978)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Hobby, D., McKenzie, R.: The Structure of Finite Algebras, vol. 76. Contemporary Mathematics. American Mathematical Society, Providence (1988)Google Scholar
  6. 6.
    Idziak, P., McKenzie, R., Valeriote, M.: The structure of locally finite varieties with polynomially many models. J. Am. Math. Soc. 22, 119–165 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Kearnes, K.A.: Almost all minimal idempotent varieties are congruence modular. Algebra Universalis 44, 39–45 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Kearnes, K.A., Kiss, E.W.: The shape of congruence lattices. Mem. Amer. Math. Soc. 222, no. 1046 (2013)Google Scholar
  9. 9.
    Kearnes, K.A., Kiss, E.W., Valeriote, M.A.: Minimal sets and varieties. Trans. Am. Math. Soc. 350, 1–41 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Kearnes, K., Szendrei, Á.: The relationship between two commutators. Int. J. Algebra Comput. 8, 497–531 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Szendrei, Á.: On closed classes of quasilinear functions. Czechoslov. Math. J. 30, 498–509 (1980)MathSciNetzbMATHGoogle Scholar
  12. 12.
    Szendrei, Á.: Strongly abelian minimal varieties. Acta Sci. Math. (Szeged) 59, 25–42 (1994)MathSciNetzbMATHGoogle Scholar
  13. 13.
    Szendrei, Á.: Maximal non-affine reducts of simple affine algebras. Algebra Universalis 34, 144–174 (1995)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Keith A. Kearnes
    • 1
  • Emil W. Kiss
    • 2
  • Ágnes Szendrei
    • 1
  1. 1.Department of MathematicsUniversity of ColoradoBoulderUSA
  2. 2.Department of Algebra and Number TheoryLoránd Eötvös UniversityBudapestHungary

Personalised recommendations