Algebra universalis

, Volume 73, Issue 3–4, pp 277–290 | Cite as

Another proof of the completeness of the Łukasiewicz axioms and of the extensions of Di Nola’s Theorem



The main aim of this paper is twofold. Firstly, to present a new method based on Farkas’ Lemma for the rational numbers, showing how to embed any finite partial subalgebra of a linearly ordered MV-algebra into \({\mathbb{Q}\cap[0, 1]}\). and then to establish a new proof of the completeness of the Łukasiewicz axioms based on this method. Secondly, to present a purely algebraic proof of Di Nola’s Representation Theorem for MV-algebras and to extend his results to the restriction of the standard MV-algebra on the rational numbers.

Key words and phrases

MV-algebra ultraproduct Di Nola’s Representation Theorem Farkas’ Lemma 

2010 Mathematics Subject Classification

Primary: 06D35 Secondary: 03B50 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Blok W., Ferreirim I.: On the structure of hoops. Algebra Universalis 43, 233–257 (2000)CrossRefMATHMathSciNetGoogle Scholar
  2. 2.
    Blok, W., van Alten, C.J.: On the finite embeddability property for residuated ordered groupoids. Trans. Amer. Math. Soc. 357, 4141–4157 (2005)Google Scholar
  3. 3.
    Botur M.: A non-associative generalization of Hájeks BL-algebras. Fuzzy Sets and Systems 178, 24–37 (2011)CrossRefMATHMathSciNetGoogle Scholar
  4. 4.
    Chang C.C.: Algebraic analysis of many valued logics. Trans. Amer. Math. Soc. 88, 467–490 (1958)CrossRefMATHMathSciNetGoogle Scholar
  5. 5.
    Chang C.C.: A new proof of the completeness of the Łukasiewicz axioms. Trans. Amer. Math. Soc. 93, 74–80 (1959)MATHMathSciNetGoogle Scholar
  6. 6.
    Chang, C.C., Keisler, H.J.: Model Theory. Elsevier (1973)Google Scholar
  7. 7.
    Cignoli, R.L.O., D’Ottaviano, I.M.L., Mundici, D.: Algebraic Foundations of Many-valued Reasoning. Kluwer (2000)Google Scholar
  8. 8.
    Cignoli, R.L.O., Mundici, D.: On Partial isomorphisms on totally ordered abelian groups and Hájek’s completeness theorem for basic logic. Multiple valued Logic, (Gordon and Breach), Special issue dedicated to the memory of Grigore Moisil, 6, 89–94 (2001)Google Scholar
  9. 9.
    Dziobiak, W., Kravchenko, A.V., Wojciechowski P.: Equivalents for a quasivariety to be generated by a single algebraic structure. Studia Logica 91, 113–123 (2009)Google Scholar
  10. 10.
    Gispert, J., Mundici, D.: MV-algebras: a variety for magnitudes with archimedean units. Algebra Universalis 53, 7–43 (2005)Google Scholar
  11. 11.
    Hahn, H.: Über die nichtarchimedischen Größensysteme. Sitzungsber. d. Akademie d. Wiss. Wien, Math.-Naturw. Klasse 116, 601–655 (1907)Google Scholar
  12. 12.
    Di Nola, A.: Representation and reticulation by quotients of MV-algebras. Ric. Mat. XL, 291–297 (1991)Google Scholar
  13. 13.
    Di Nola, A., Lenzi, G., Spada, L.: Representation of MV-algebras by regular ultrapowers of [0, 1]. Arch. Math. Log. 49, 491–500 (2010)Google Scholar
  14. 14.
    Farkas G.: Über die Theorie der einfachen Ungleichungen. J. Reine Angew. Math. 124, 1–27 (1902)Google Scholar
  15. 15.
    Keisler H.J.: A survey of ultraproducts. In: Proc. Internat. Congr. Logic, Methodology and Philosophy of Science, pp. 112–126. North-Holland, Amsterdam (1965)Google Scholar
  16. 16.
    Mundici, D.: Advanced Łukasiewicz calculus and MV-algebras. Trends in Logic, vol. 35 Springer, New York, (2011)Google Scholar
  17. 17.
    Paseka, J.: Representations of zero-cancellative pomonoids. Math. Slovaca 64, 777–788 (2014)Google Scholar
  18. 18.
    Schrijver, A.: Theory of linear and integer programming. Wiley-Interscience series in discrete mathematics and optimization, John Wiley & sons (1998)Google Scholar
  19. 19.
    Wojciechowski P.J.: Embeddings of totally ordered MV-algebras of bounded cardinality. Fund. Math. 203, 57–63 (2009)CrossRefMATHMathSciNetGoogle Scholar

Copyright information

© Springer Basel 2015

Authors and Affiliations

  1. 1.Faculty of SciencePalacký University OlomoucOlomoucCzech Republic
  2. 2.Department of Mathematics and Statistics, Faculty of ScienceMasaryk UniversityBrnoCzech Republic

Personalised recommendations