Algebra universalis

, Volume 72, Issue 2, pp 163–166 | Cite as

Positive derivations on Archimedean d-rings



For an Archimedean d-ring R and a positive derivation D on R, it is shown that \({D(R) \subseteq N(R)}\), where N(R) is the \({\ell}\)-radical of R.

Mathematics Subject Classification

Primary: 06F25 

Key words and phrases

lattice ordered ring d-ring positive derivation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bernau S.J., Huijsmans C.B.: Almost f-algebras and d-algebras. Math. Proc. Camb. Phil. Soc. 107, 287–308 (1990)MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Birkhoff G., Pierce R.S.: Lattice-ordered rings. An. Acad. Brasil. Ci. 28, 41–69 (1956)MathSciNetMATHGoogle Scholar
  3. 3.
    Boulabiar K.: Positive derivations on Archimedean almost f-rings. Order 19, 385–395 (2002)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Colville P., Davis G., Keimel K.: Positive derivations on f-rings. J. Aust. Math. Soc. 23, 371–375 (1977)MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Diem J.E.: A radical for lattice-ordered rings. Pacific J. Math, 25, 71–82 (1968)MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Henriksen, M., Smith, F.M.,: Some properties of positive derivations on f-rings. In: Ordered fields and real algebraic geometry (San Francisco, Calif., 1981), Contemp. Math., vol. 8, pp. 175–184. Amer. Math. Soc., Providence (1982)Google Scholar
  7. 7.
    Ma J., Redfield R.H.: Positive derivations on Archimedean lattice-ordered rings. Positivity 13, 165–191 (2009)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Toumi, M.: Continuous generalized (\({\theta, \phi}\))-separating derivations on archimedean almost f-algebras. Asian-European J. Math. 3, 1–17 (2012)MathSciNetGoogle Scholar

Copyright information

© Springer Basel 2014

Authors and Affiliations

  1. 1.Department of MathematicsUniversity of Houston-Clear LakeHoustonUSA
  2. 2.Department of MathematicsShanghai Jiao Tong UniversityShanghaiChina

Personalised recommendations