Skip to main content
Log in

Projective objects in the categories of abelian -groups and MV-algebras

  • Published:
Algebra universalis Aims and scope Submit manuscript

Abstract

We provide a description of free MV-algebras as subalgebras of intervals of free Abelian -groups. This description shows that the unital Abelian -group corresponding to a free MV-algebra is projective as an Abelian -group. More generally, we prove that this is still the case for projective MV-algebras. Using a construction similar to the one for MV-algebras, we show that the free algebras in the variety of negative cones of Abelian -groups are subalgebras of negative cones of free Abelian -groups. This allows us to prove a Baker–Beynon-type theorem for finitely generated free algebras in the variety of negative cones of Abelian -groups. These results are specific cases of a more general situation, which is the subject of the last section of this paper.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Anderson, M., Feil, T.: Lattice-Ordered Groups: an Introduction. D. Reidel Publishing Company (1988)

  2. Bahls P., Cole J., Galatos N., Jipsen P., Tsinakis C.: Cancellative residuated lattices. Algebra Universalis 50, 83–106 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  3. Baker K.A.: Free vector lattices. Canad. J. Math. 20, 58–66 (1968)

    Article  MATH  MathSciNet  Google Scholar 

  4. Beynon W.M.: Duality theorems for finitely generated vector lattices. Proc. London Math. Soc. 31(3), 114–128 (1975)

    Article  MATH  MathSciNet  Google Scholar 

  5. Beynon W.M.: Applications of duality in the theory of finitely generated lattice-ordered abelian groups. Canad. J. Math. 29, 243–254 (1977)

    Article  MATH  MathSciNet  Google Scholar 

  6. Birkhoff G.: On the structure of abstract algebras. Proc. Cambridge Phil. Soc. 31, 433–454 (1935)

    Article  Google Scholar 

  7. Chang C.C.: Algebraic analysis of many valued logics. Trans. Amer. Math. Soc. 88, 467–490 (1958)

    Article  MATH  MathSciNet  Google Scholar 

  8. Chang C.C.: A new proof of the completeness of the Łukasiewicz axioms. Trans. Amer. Math. Soc. 93, 74–80 (1959)

    MATH  MathSciNet  Google Scholar 

  9. Cignoli, R.: Free lattice-ordered abelian groups and varieties of MV-algebras. In: IX Latin American Symposium on Mathematical Logic. Notas de Lógica Mathemática, v. 38, part I, pp. 113–118. Bahía Blanca (1993)

  10. Cignoli, R., D’Ottaviano, I., Mundici, D.: Algebraic foundations of many-valued reasoning. Trends in Logic - Studia Logica Library, Vol. 7. Kluwer Academic Publishers, Dordrecht (2000)

  11. Cignoli R., Torrens A.: Free cancellative hoops. Algebra Universalis 43, 213–216 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  12. Fuchs L.: Note on the Construction of free MV-algebras. Algebra Universalis 62, 45–49 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  13. Galatos, N., Jipsen, P., Kowalski, T., Ono, H.: Residuated Lattices: An Algebraic Glimpse at Substructural Logics. Studies in Logic and the Foundations of Mathematics, Volume 151. Elsevier (2007)

  14. Jakubík J.: On Free MV-algebras. Czech. Math. Journal 53, 311–317 (2003)

    Article  MATH  Google Scholar 

  15. Jipsen, P., Tsinakis, C.: A survey of Residuated Lattices. In: Martinez, J. (editor) Ordered algebraic structures, pp. 19–56. Kluwer, Dordrecht (2002)

  16. McKenzie, R.: An algebraic version of categorical equivalence for varieties and more general algebraic theories. In: Ursini, A., Agliano, P. (eds.) Logic and Algebra, volume 180 of Lecture Notes in Pure and Applied Mathematics, pp. 211–243. Marcel Dekker (1996)

  17. Metcalfe, G., Paoli, F., Tsinakis, C.: Ordered algebras and logic. In: Hosini, H., Montagna, F. (eds.) Probability, Uncertainty, and Rationality. CRM Series vol. 10, Edizioni della Scuola Normale Superiore, pp. 3–83. Pisa (2010)

  18. Mundici D.: Interpretation of AFC*-algebras in Łukasiewicz sentential calculus. J. Funct. Anal. 65, 15–63 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  19. Panti, G.: The automorphism group of falsum free product logic. In: Aguzzoli, S. et al. (eds.) Algebraic and proof-theoretic aspects of non-classical logics. Lecture Notes in Artificical Intelligence, vol. 4460, pp. 275–289. Springer (2007)

  20. Weinberg E.C.: Free lattice-ordered abelian groups. Math. Ann. 151, 187–199 (1963)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to William Young.

Additional information

Presented by J. Raftery.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Young, W. Projective objects in the categories of abelian -groups and MV-algebras. Algebra Univers. 71, 191–200 (2014). https://doi.org/10.1007/s00012-014-0268-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00012-014-0268-1

2010 Mathematics Subject Classification

Key words and phrases

Navigation