Algebra universalis

, Volume 71, Issue 2, pp 191–200 | Cite as

Projective objects in the categories of abelian -groups and MV-algebras

  • William Young


We provide a description of free MV-algebras as subalgebras of intervals of free Abelian -groups. This description shows that the unital Abelian -group corresponding to a free MV-algebra is projective as an Abelian -group. More generally, we prove that this is still the case for projective MV-algebras. Using a construction similar to the one for MV-algebras, we show that the free algebras in the variety of negative cones of Abelian -groups are subalgebras of negative cones of free Abelian -groups. This allows us to prove a Baker–Beynon-type theorem for finitely generated free algebras in the variety of negative cones of Abelian -groups. These results are specific cases of a more general situation, which is the subject of the last section of this paper.

2010 Mathematics Subject Classification

Primary: 06F15 Secondary: 06D35 

Key words and phrases

-groups MV-algebras negative cones projective 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Anderson, M., Feil, T.: Lattice-Ordered Groups: an Introduction. D. Reidel Publishing Company (1988)Google Scholar
  2. 2.
    Bahls P., Cole J., Galatos N., Jipsen P., Tsinakis C.: Cancellative residuated lattices. Algebra Universalis 50, 83–106 (2003)CrossRefMATHMathSciNetGoogle Scholar
  3. 3.
    Baker K.A.: Free vector lattices. Canad. J. Math. 20, 58–66 (1968)CrossRefMATHMathSciNetGoogle Scholar
  4. 4.
    Beynon W.M.: Duality theorems for finitely generated vector lattices. Proc. London Math. Soc. 31(3), 114–128 (1975)CrossRefMATHMathSciNetGoogle Scholar
  5. 5.
    Beynon W.M.: Applications of duality in the theory of finitely generated lattice-ordered abelian groups. Canad. J. Math. 29, 243–254 (1977)CrossRefMATHMathSciNetGoogle Scholar
  6. 6.
    Birkhoff G.: On the structure of abstract algebras. Proc. Cambridge Phil. Soc. 31, 433–454 (1935)CrossRefGoogle Scholar
  7. 7.
    Chang C.C.: Algebraic analysis of many valued logics. Trans. Amer. Math. Soc. 88, 467–490 (1958)CrossRefMATHMathSciNetGoogle Scholar
  8. 8.
    Chang C.C.: A new proof of the completeness of the Łukasiewicz axioms. Trans. Amer. Math. Soc. 93, 74–80 (1959)MATHMathSciNetGoogle Scholar
  9. 9.
    Cignoli, R.: Free lattice-ordered abelian groups and varieties of MV-algebras. In: IX Latin American Symposium on Mathematical Logic. Notas de Lógica Mathemática, v. 38, part I, pp. 113–118. Bahía Blanca (1993)Google Scholar
  10. 10.
    Cignoli, R., D’Ottaviano, I., Mundici, D.: Algebraic foundations of many-valued reasoning. Trends in Logic - Studia Logica Library, Vol. 7. Kluwer Academic Publishers, Dordrecht (2000)Google Scholar
  11. 11.
    Cignoli R., Torrens A.: Free cancellative hoops. Algebra Universalis 43, 213–216 (2000)CrossRefMATHMathSciNetGoogle Scholar
  12. 12.
    Fuchs L.: Note on the Construction of free MV-algebras. Algebra Universalis 62, 45–49 (2009)CrossRefMATHMathSciNetGoogle Scholar
  13. 13.
    Galatos, N., Jipsen, P., Kowalski, T., Ono, H.: Residuated Lattices: An Algebraic Glimpse at Substructural Logics. Studies in Logic and the Foundations of Mathematics, Volume 151. Elsevier (2007)Google Scholar
  14. 14.
    Jakubík J.: On Free MV-algebras. Czech. Math. Journal 53, 311–317 (2003)CrossRefMATHGoogle Scholar
  15. 15.
    Jipsen, P., Tsinakis, C.: A survey of Residuated Lattices. In: Martinez, J. (editor) Ordered algebraic structures, pp. 19–56. Kluwer, Dordrecht (2002)Google Scholar
  16. 16.
    McKenzie, R.: An algebraic version of categorical equivalence for varieties and more general algebraic theories. In: Ursini, A., Agliano, P. (eds.) Logic and Algebra, volume 180 of Lecture Notes in Pure and Applied Mathematics, pp. 211–243. Marcel Dekker (1996)Google Scholar
  17. 17.
    Metcalfe, G., Paoli, F., Tsinakis, C.: Ordered algebras and logic. In: Hosini, H., Montagna, F. (eds.) Probability, Uncertainty, and Rationality. CRM Series vol. 10, Edizioni della Scuola Normale Superiore, pp. 3–83. Pisa (2010)Google Scholar
  18. 18.
    Mundici D.: Interpretation of AFC*-algebras in Łukasiewicz sentential calculus. J. Funct. Anal. 65, 15–63 (1986)CrossRefMATHMathSciNetGoogle Scholar
  19. 19.
    Panti, G.: The automorphism group of falsum free product logic. In: Aguzzoli, S. et al. (eds.) Algebraic and proof-theoretic aspects of non-classical logics. Lecture Notes in Artificical Intelligence, vol. 4460, pp. 275–289. Springer (2007)Google Scholar
  20. 20.
    Weinberg E.C.: Free lattice-ordered abelian groups. Math. Ann. 151, 187–199 (1963)CrossRefMATHMathSciNetGoogle Scholar

Copyright information

© Springer Basel 2014

Authors and Affiliations

  1. 1.Department of MathematicsVanderbilt UniversityNashvilleU.S.A

Personalised recommendations