Algebra universalis

, Volume 69, Issue 3, pp 213–229 | Cite as

Finitely generated varieties of distributive effect algebras

  • Ivan Chajda
  • Jan KührEmail author


Lattice-ordered effect algebras generalize both MV-algebras and orthomodular lattices. In this paper, finitely generated varieties of distributive lattice effect algebras are axiomatized, and for any positive integer n, the free n-generator algebras in these varieties are described.

2010 Mathematics Subject Classification

Primary: 03G10 Secondary: 03G25 06D35 

Key words and phrases

lattice effect algebra MV-algebra finitely generated variety free algebra 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Berman, J.: The structure of free algebras. In: Kudryavtsev, V.B., Rosenberg, I.G. (eds.) Structural Theory of Automata, Semigroups, and Universal Algebra. NATO Science Series II, vol. 207, pp. 47–76. Springer, Dordrecht (2005)Google Scholar
  2. 2.
    Burris, S., Sankappanavar, H.P.: A Course in Universal Algebra: The Millennium Edition.
  3. 3.
    Chajda I., Halaš R.: Varieties of lattice effect algebras generated by four-element members. Acta Sci. Math. (Szeged) 74, 49–64 (2008)MathSciNetzbMATHGoogle Scholar
  4. 4.
    Chajda I., Halaš R., Kühr J.: Many-valued quantum algebras. Algebra Universalis 60, 63–90 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    Chajda I., Halaš R., Kühr J.: Every effect algebra can be made into a total algebra. Algebra Universalis 61, 139–150 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    Cignoli, R.L.O., D’Ottaviano, I.M.L., Mundici, D.: Algebraic Foundations of Many-valued Reasoning. Trends in Logic, vol. 7. Kluwer, Dordrecht (2000)Google Scholar
  7. 7.
    Dvurečenskij, A., Pulmannová, S.: New Trends in Quantum Structures. Kluwer, Dordrecht/Ister Science, Bratislava (2000)Google Scholar
  8. 8.
    Foulis D., Bennett M.K.: Effect algebras and unsharp quantum logics. Found. Phys. 24, 1331–1352 (1994)MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    Gispert J., Mundici D.: MV-algebras: a variety for magnitudes with archimedean units. Algebra Universalis 53, 7–43 (2005)MathSciNetzbMATHCrossRefGoogle Scholar
  10. 10.
    Greechie R.J., Foulis D., Pulmannová S.: The centrum of an effect algebra. Order 12, 91–106 (1995)MathSciNetzbMATHCrossRefGoogle Scholar
  11. 11.
    Kôpka, F.: D-posets of fuzzy sets. Tatra Mt. Math. Publ. 1, 83–87 (1992)Google Scholar
  12. 12.
    Kôpka, F., Chovanec, F.: D-posets. Math. Slovaca 44, 21–34 (1994)Google Scholar
  13. 13.
    Pulmannová S., Vinceková E.: Congruences and ideals in lattice effect algebras as basic algebras. Kybernetika 45, 1030–1039 (2009)MathSciNetzbMATHGoogle Scholar
  14. 14.
    Riečanová Z.: Subalgebras, intervals and central elements of generalized effect algebras. Internat. J. Theoret. Phys. 38, 3209–3220 (1999)MathSciNetzbMATHCrossRefGoogle Scholar
  15. 15.
    Riečanová Z.: Generalization of blocks for D-lattices and lattice-ordered effect algebras. Internat. J. Theoret. Phys. 39, 231–237 (2000)MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer Basel 2013

Authors and Affiliations

  1. 1.Department of Algebra and Geometry, Faculty of SciencePalacký University in OlomoucOlomoucCzech Republic

Personalised recommendations