Advertisement

Algebra universalis

, Volume 68, Issue 3–4, pp 287–291 | Cite as

A note on representation of lattices by weak congruences

  • Branimir Šešelja
  • Vanja Stepanović
  • Andreja Tepavčević
Article

Abstract

A weak congruence is a symmetric, transitive, and compatible relation. An element u of an algebraic lattice L is Δ-suitable if there is an isomorphism κ from L to the lattice of weak congruences of an algebra such that κ(u) is the diagonal relation. Some conditions implying the Δ-suitability of u are presented.

2010 Mathematics Subject Classification

Primary: 08A30 Secondary: 06B15 

Key words and phrases

algebraic lattice weak congruence lattice Δ–suitable element 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Czédli G: A Horn sentence in coalition lattices. Acta Math. Hungar. 72, 99–104 (1996)MathSciNetMATHCrossRefGoogle Scholar
  2. 2.
    Czédli G: Sums of lattices and a relational category. Order 26, 309–318 (2009)MathSciNetMATHCrossRefGoogle Scholar
  3. 3.
    Czédli G., Erné M., Šešelja B., Tepavčević A.: Characteristic triangles of closure operators with applications in general algebra. Algebra Universalis 62, 399–418 (2009)MathSciNetMATHCrossRefGoogle Scholar
  4. 4.
    Czédli G., Šešelja B., Tepavčević A.: Semidistributive elements in lattices; application to groups and rings. Algebra Universalis 58, 349–355 (2008)MathSciNetMATHCrossRefGoogle Scholar
  5. 5.
    Graczyńska, E.: On the sum of double systems of lattices. In: Contributions to Universal Algebra (Szeged, 1975). Colloq. Math. Soc. János Bolyai, vol. 17, pp. 161–178. North-Holland, Amsterdam (1977)Google Scholar
  6. 6.
    Graczyńska E., Grätzer G.: On double systems of lattices. Demonstratio Math. 13, 743–747 (1980)MathSciNetMATHGoogle Scholar
  7. 7.
    Grätzer G.: Lattice Theory: Foundation. Birkhäuser, Basel (2011)MATHCrossRefGoogle Scholar
  8. 8.
    Grätzer G., Schmidt E.T.: Standard ideals in lattices. Acta Math. Acad. Sci. Hungar. 12, 17–86 (1961)MathSciNetMATHCrossRefGoogle Scholar
  9. 9.
    Grätzer G., Schmidt E.T.: Characterizations of congruence lattices of abstract algebras. Acta Sci. Math. (Szeged) 24, 34–59 (1963)MathSciNetMATHGoogle Scholar
  10. 10.
    Ploščica M.: Graphical compositions and weak congruences. Publ. Inst. Math. Beograd 56(70), 34–40 (1994)MathSciNetGoogle Scholar
  11. 11.
    Šešelja, B., Tepavčević, A.: Weak Congruences in Universal Algebra. Institute of Mathematics, Novi Sad (2001)Google Scholar
  12. 12.
    Šešelja B., Tepavčević A.: A note on CIP varieties. Algebra Universalis 45, 349–351 (2001)MathSciNetMATHGoogle Scholar
  13. 13.
    Šešelja, B., Tepavčević, A.: On weak congruence lattices representation problem. In: Proceedings of the 10th Congress of Yugoslav Mathematicians (Belgrade, 2001), pp. 177–184. Univ. Belgrade Fac. Math., Belgrade (2001)Google Scholar
  14. 14.
    Šešelja B., Tepavčević A.: A note on atomistic weak congruence lattices. Discrete Math. 308, 2054–2057 (2008)MathSciNetMATHCrossRefGoogle Scholar
  15. 15.
    Tepavčević, A.: On representation of lattices by weak congruences and weak tolerances. In: Pinus, A.G., Ponomaryov, K.N. (eds.) Algebra and Model Theory, pp. 173–181. Novosibirsk (1997)Google Scholar
  16. 16.
    Vojvodić G., Šešelja B.: On the lattice of weak congruence relations. Algebra Universalis 25, 121–130 (1988)MathSciNetMATHCrossRefGoogle Scholar
  17. 17.
    Vojvodić G., Šešelja B.: The diagonal relation in the lattice of weak congruences and the representation of lattices. Univ. u Novom Sadu Zb. Rad. Prirod.-Mat. Fak. Ser. Mat. 19, 167–178 (1989)MathSciNetMATHGoogle Scholar

Copyright information

© Springer Basel 2012

Authors and Affiliations

  • Branimir Šešelja
    • 1
  • Vanja Stepanović
    • 2
  • Andreja Tepavčević
    • 3
  1. 1.Department of Mathematics and InformaticsUniversity of Novi SadNovi SadSerbia
  2. 2.Faculty of AgricultureUniversity of BelgradeBelgradeSerbia
  3. 3.Department of Mathematics and InformaticsUniversity of Novi SadNovi SadSerbia

Personalised recommendations