Algebra universalis

, Volume 68, Issue 3–4, pp 287–291 | Cite as

A note on representation of lattices by weak congruences

  • Branimir Šešelja
  • Vanja Stepanović
  • Andreja Tepavčević


A weak congruence is a symmetric, transitive, and compatible relation. An element u of an algebraic lattice L is Δ-suitable if there is an isomorphism κ from L to the lattice of weak congruences of an algebra such that κ(u) is the diagonal relation. Some conditions implying the Δ-suitability of u are presented.

2010 Mathematics Subject Classification

Primary: 08A30 Secondary: 06B15 

Key words and phrases

algebraic lattice weak congruence lattice Δ–suitable element 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Czédli G: A Horn sentence in coalition lattices. Acta Math. Hungar. 72, 99–104 (1996)MathSciNetMATHCrossRefGoogle Scholar
  2. 2.
    Czédli G: Sums of lattices and a relational category. Order 26, 309–318 (2009)MathSciNetMATHCrossRefGoogle Scholar
  3. 3.
    Czédli G., Erné M., Šešelja B., Tepavčević A.: Characteristic triangles of closure operators with applications in general algebra. Algebra Universalis 62, 399–418 (2009)MathSciNetMATHCrossRefGoogle Scholar
  4. 4.
    Czédli G., Šešelja B., Tepavčević A.: Semidistributive elements in lattices; application to groups and rings. Algebra Universalis 58, 349–355 (2008)MathSciNetMATHCrossRefGoogle Scholar
  5. 5.
    Graczyńska, E.: On the sum of double systems of lattices. In: Contributions to Universal Algebra (Szeged, 1975). Colloq. Math. Soc. János Bolyai, vol. 17, pp. 161–178. North-Holland, Amsterdam (1977)Google Scholar
  6. 6.
    Graczyńska E., Grätzer G.: On double systems of lattices. Demonstratio Math. 13, 743–747 (1980)MathSciNetMATHGoogle Scholar
  7. 7.
    Grätzer G.: Lattice Theory: Foundation. Birkhäuser, Basel (2011)MATHCrossRefGoogle Scholar
  8. 8.
    Grätzer G., Schmidt E.T.: Standard ideals in lattices. Acta Math. Acad. Sci. Hungar. 12, 17–86 (1961)MathSciNetMATHCrossRefGoogle Scholar
  9. 9.
    Grätzer G., Schmidt E.T.: Characterizations of congruence lattices of abstract algebras. Acta Sci. Math. (Szeged) 24, 34–59 (1963)MathSciNetMATHGoogle Scholar
  10. 10.
    Ploščica M.: Graphical compositions and weak congruences. Publ. Inst. Math. Beograd 56(70), 34–40 (1994)MathSciNetGoogle Scholar
  11. 11.
    Šešelja, B., Tepavčević, A.: Weak Congruences in Universal Algebra. Institute of Mathematics, Novi Sad (2001)Google Scholar
  12. 12.
    Šešelja B., Tepavčević A.: A note on CIP varieties. Algebra Universalis 45, 349–351 (2001)MathSciNetMATHGoogle Scholar
  13. 13.
    Šešelja, B., Tepavčević, A.: On weak congruence lattices representation problem. In: Proceedings of the 10th Congress of Yugoslav Mathematicians (Belgrade, 2001), pp. 177–184. Univ. Belgrade Fac. Math., Belgrade (2001)Google Scholar
  14. 14.
    Šešelja B., Tepavčević A.: A note on atomistic weak congruence lattices. Discrete Math. 308, 2054–2057 (2008)MathSciNetMATHCrossRefGoogle Scholar
  15. 15.
    Tepavčević, A.: On representation of lattices by weak congruences and weak tolerances. In: Pinus, A.G., Ponomaryov, K.N. (eds.) Algebra and Model Theory, pp. 173–181. Novosibirsk (1997)Google Scholar
  16. 16.
    Vojvodić G., Šešelja B.: On the lattice of weak congruence relations. Algebra Universalis 25, 121–130 (1988)MathSciNetMATHCrossRefGoogle Scholar
  17. 17.
    Vojvodić G., Šešelja B.: The diagonal relation in the lattice of weak congruences and the representation of lattices. Univ. u Novom Sadu Zb. Rad. Prirod.-Mat. Fak. Ser. Mat. 19, 167–178 (1989)MathSciNetMATHGoogle Scholar

Copyright information

© Springer Basel 2012

Authors and Affiliations

  • Branimir Šešelja
    • 1
  • Vanja Stepanović
    • 2
  • Andreja Tepavčević
    • 3
  1. 1.Department of Mathematics and InformaticsUniversity of Novi SadNovi SadSerbia
  2. 2.Faculty of AgricultureUniversity of BelgradeBelgradeSerbia
  3. 3.Department of Mathematics and InformaticsUniversity of Novi SadNovi SadSerbia

Personalised recommendations