Algebra universalis

, Volume 67, Issue 2, pp 141–162 | Cite as

Free iterative and iteration K-semialgebras

  • Z. ÉsikEmail author
  • W. Kuich


We consider algebras of rational power series over a finite alphabet Σ with coefficients in a commutative semiring K and characterize them as the free algebras in various classes of algebraic structures.

2010 Mathematics Subject Classification

Primary: 08A70 Secondary: 68Q70 

Keywords and phrases

rational power series free algebras finite automata 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Béal, M.-P., Lombardy, S., Sakarovitch, J.: On the equivalence of \({\mathbb{Z}}\)-automata. In: Automata, Languages and Programming (Lisbon, 2005). LNCS, vol. 3580, pp. 397–409. Springer (2005)Google Scholar
  2. 2.
    Béal, M.-P., Lombardy, S., Sakarovitch, J.: Conjugacy and equivalence of weighted automata and functional transducers. In: Computer Science—Theory and Applications (St. Petersburg, 2006). LNCS, vol. 3967, pp. 58–69. Springer (2006)Google Scholar
  3. 3.
    Berstel, J., Reutenauer, C.: Noncommutative Rational Series with Applications. Cambridge University Press (2011)Google Scholar
  4. 4.
    Bloom, S.L., Ésik, Z.: Iteration Theories. EATCS Monographs on Theoretical Computer Science. Springer (1993)Google Scholar
  5. 5.
    Bloom S.L., Ésik Z.: Axiomatizing rational power series over natural numbers. Inform. and Comput. 207, 793–811 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    Bloom S.L., Ésik Z., Kuich W.: Partial Conway and iteration semirings. Fund. Inform. 86, 19–40 (2008)MathSciNetzbMATHGoogle Scholar
  7. 7.
    Burris, S.N., Sankappanavar, M.P.: A Course in Universal Algebra. Springer (1981)Google Scholar
  8. 8.
    Conway, J.C.: Regular Algebra and Finite Machines. Chapman and Hall (1971)Google Scholar
  9. 9.
    Crvenković S., Madarász R.: On Kleene algebras. Theoret. Comput. Sci. 108, 17–24 (1993)MathSciNetzbMATHCrossRefGoogle Scholar
  10. 10.
    Eilenberg, S.: Automata, Languages, and Machines. Academic Press (1974)Google Scholar
  11. 11.
    Engelfriet, J.: Simple Program Schemes and Formal Languages. LNCS, vol. 20. Springer (1974)Google Scholar
  12. 12.
    Ésik Z.: Group axioms for iteration. Inform. and Comput. 148, 131–180 (1999)MathSciNetzbMATHCrossRefGoogle Scholar
  13. 13.
    Ésik, Z.: Iteration semirings. In: Developments in Language Theory (Kyoto, 2008). LNCS, vol. 5257, pp. 1–21. Springer (2008)Google Scholar
  14. 14.
    Ésik, Z., Kuich, W.: A generalization of Kozen’s axiomatization of the equational theory of regular sets. In: Words, Semigroups and Transductions, pp. 99–114. World Scientific (2001)Google Scholar
  15. 15.
    Ésik Z., Kuich W.: Inductive *-semirings. Theoret. Comput. Sci. 324, 3–33 (2004)MathSciNetzbMATHCrossRefGoogle Scholar
  16. 16.
    Ésik, Z., Kuich, W.: Finite automata. In: Handbook of Weighted Automata, pp. 69–104. Springer (2009)Google Scholar
  17. 17.
    Ésik, Z., Maletti, A.: Simulation vs. equivalence. In: Foundations of Computer Science (Las Vegas, 2010), pp. 119–122. CSREA Press (2010)Google Scholar
  18. 18.
    Golan, J.S.: The Theory of Semirings with Applications in Computer Science. Longman (1993)Google Scholar
  19. 19.
    Golan, J.S.: Semirings and Affine Equations Over Them: Theory and Applications. Kluwer (2003)Google Scholar
  20. 20.
    Hebisch, U., Weinert, H.J.: Semirings. Algebraic Theory and Applications in Computer Science. World Scientific (1998)Google Scholar
  21. 21.
    Kozen D.: A completeness theorem for Kleene algebras and the algebra of regular events. Inform. and Comput. 110, 366–390 (1994)MathSciNetzbMATHCrossRefGoogle Scholar
  22. 22.
    Krob, D.: Expressions rationelles sur un anneau. In: Topics in Invariant Theory. LNM, vol. 1478, pp. 215–243. Springer (1991)Google Scholar
  23. 23.
    Krob D.: Complete systems of \({\mathbb{B}}\)-rational identities. Theoret. Comput. Sci. 89, 207–343 (1991)MathSciNetzbMATHCrossRefGoogle Scholar
  24. 24.
    Krob D.: The equality problem for rational series with multiplicities in the tropical semiring is undecidable. Internat. J. Algebra Comput. 4, 405–425 (1994)MathSciNetzbMATHCrossRefGoogle Scholar
  25. 25.
    Kuich, W., Salomaa, A.: Semirings, Automata, Languages. Springer (1986)Google Scholar
  26. 26.
    Morisaki M., Kasai K.: A complete axiom system for rational sets with multiplicity. Theoret. Comput. Sci. 11, 79–92 (1980)MathSciNetzbMATHCrossRefGoogle Scholar
  27. 27.
    Sakarovitch, J.: Rational and recognizable power series. In: Handbook of Weighted Automata. Springer (2009)Google Scholar
  28. 28.
    Sakarovitch, J.: Elements of Automata Theory. Cambridge University Press (2009)Google Scholar
  29. 29.
    Salomaa A.: Two complete axiom systems for the algebra of regular events. J. Assoc. Comput. Mach. 13, 158–169 (1966)MathSciNetzbMATHCrossRefGoogle Scholar
  30. 30.
    Schützenberger M.P.: On the definition of a family of automata. Inform. and Control 4, 245–270 (1961)zbMATHCrossRefGoogle Scholar
  31. 31.
    Schützenberger M.P.: On a problem of R. Jungen. Proc. Amer. Math. Soc. 13, 885–890 (1962)zbMATHCrossRefGoogle Scholar

Copyright information

© Springer Basel AG 2012

Authors and Affiliations

  1. 1.Dept. of Computer ScienceUniversity of SzegedSzegedHungary
  2. 2.Inst. für Diskrete MathematikTU WienAustria

Personalised recommendations