Advertisement

Algebra universalis

, Volume 67, Issue 2, pp 141–162 | Cite as

Free iterative and iteration K-semialgebras

  • Z. ÉsikEmail author
  • W. Kuich
Article

Abstract

We consider algebras of rational power series over a finite alphabet Σ with coefficients in a commutative semiring K and characterize them as the free algebras in various classes of algebraic structures.

2010 Mathematics Subject Classification

Primary: 08A70 Secondary: 68Q70 

Keywords and phrases

rational power series free algebras finite automata 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Béal, M.-P., Lombardy, S., Sakarovitch, J.: On the equivalence of \({\mathbb{Z}}\)-automata. In: Automata, Languages and Programming (Lisbon, 2005). LNCS, vol. 3580, pp. 397–409. Springer (2005)Google Scholar
  2. 2.
    Béal, M.-P., Lombardy, S., Sakarovitch, J.: Conjugacy and equivalence of weighted automata and functional transducers. In: Computer Science—Theory and Applications (St. Petersburg, 2006). LNCS, vol. 3967, pp. 58–69. Springer (2006)Google Scholar
  3. 3.
    Berstel, J., Reutenauer, C.: Noncommutative Rational Series with Applications. Cambridge University Press (2011)Google Scholar
  4. 4.
    Bloom, S.L., Ésik, Z.: Iteration Theories. EATCS Monographs on Theoretical Computer Science. Springer (1993)Google Scholar
  5. 5.
    Bloom S.L., Ésik Z.: Axiomatizing rational power series over natural numbers. Inform. and Comput. 207, 793–811 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    Bloom S.L., Ésik Z., Kuich W.: Partial Conway and iteration semirings. Fund. Inform. 86, 19–40 (2008)MathSciNetzbMATHGoogle Scholar
  7. 7.
    Burris, S.N., Sankappanavar, M.P.: A Course in Universal Algebra. Springer (1981)Google Scholar
  8. 8.
    Conway, J.C.: Regular Algebra and Finite Machines. Chapman and Hall (1971)Google Scholar
  9. 9.
    Crvenković S., Madarász R.: On Kleene algebras. Theoret. Comput. Sci. 108, 17–24 (1993)MathSciNetzbMATHCrossRefGoogle Scholar
  10. 10.
    Eilenberg, S.: Automata, Languages, and Machines. Academic Press (1974)Google Scholar
  11. 11.
    Engelfriet, J.: Simple Program Schemes and Formal Languages. LNCS, vol. 20. Springer (1974)Google Scholar
  12. 12.
    Ésik Z.: Group axioms for iteration. Inform. and Comput. 148, 131–180 (1999)MathSciNetzbMATHCrossRefGoogle Scholar
  13. 13.
    Ésik, Z.: Iteration semirings. In: Developments in Language Theory (Kyoto, 2008). LNCS, vol. 5257, pp. 1–21. Springer (2008)Google Scholar
  14. 14.
    Ésik, Z., Kuich, W.: A generalization of Kozen’s axiomatization of the equational theory of regular sets. In: Words, Semigroups and Transductions, pp. 99–114. World Scientific (2001)Google Scholar
  15. 15.
    Ésik Z., Kuich W.: Inductive *-semirings. Theoret. Comput. Sci. 324, 3–33 (2004)MathSciNetzbMATHCrossRefGoogle Scholar
  16. 16.
    Ésik, Z., Kuich, W.: Finite automata. In: Handbook of Weighted Automata, pp. 69–104. Springer (2009)Google Scholar
  17. 17.
    Ésik, Z., Maletti, A.: Simulation vs. equivalence. In: Foundations of Computer Science (Las Vegas, 2010), pp. 119–122. CSREA Press (2010)Google Scholar
  18. 18.
    Golan, J.S.: The Theory of Semirings with Applications in Computer Science. Longman (1993)Google Scholar
  19. 19.
    Golan, J.S.: Semirings and Affine Equations Over Them: Theory and Applications. Kluwer (2003)Google Scholar
  20. 20.
    Hebisch, U., Weinert, H.J.: Semirings. Algebraic Theory and Applications in Computer Science. World Scientific (1998)Google Scholar
  21. 21.
    Kozen D.: A completeness theorem for Kleene algebras and the algebra of regular events. Inform. and Comput. 110, 366–390 (1994)MathSciNetzbMATHCrossRefGoogle Scholar
  22. 22.
    Krob, D.: Expressions rationelles sur un anneau. In: Topics in Invariant Theory. LNM, vol. 1478, pp. 215–243. Springer (1991)Google Scholar
  23. 23.
    Krob D.: Complete systems of \({\mathbb{B}}\)-rational identities. Theoret. Comput. Sci. 89, 207–343 (1991)MathSciNetzbMATHCrossRefGoogle Scholar
  24. 24.
    Krob D.: The equality problem for rational series with multiplicities in the tropical semiring is undecidable. Internat. J. Algebra Comput. 4, 405–425 (1994)MathSciNetzbMATHCrossRefGoogle Scholar
  25. 25.
    Kuich, W., Salomaa, A.: Semirings, Automata, Languages. Springer (1986)Google Scholar
  26. 26.
    Morisaki M., Kasai K.: A complete axiom system for rational sets with multiplicity. Theoret. Comput. Sci. 11, 79–92 (1980)MathSciNetzbMATHCrossRefGoogle Scholar
  27. 27.
    Sakarovitch, J.: Rational and recognizable power series. In: Handbook of Weighted Automata. Springer (2009)Google Scholar
  28. 28.
    Sakarovitch, J.: Elements of Automata Theory. Cambridge University Press (2009)Google Scholar
  29. 29.
    Salomaa A.: Two complete axiom systems for the algebra of regular events. J. Assoc. Comput. Mach. 13, 158–169 (1966)MathSciNetzbMATHCrossRefGoogle Scholar
  30. 30.
    Schützenberger M.P.: On the definition of a family of automata. Inform. and Control 4, 245–270 (1961)zbMATHCrossRefGoogle Scholar
  31. 31.
    Schützenberger M.P.: On a problem of R. Jungen. Proc. Amer. Math. Soc. 13, 885–890 (1962)zbMATHCrossRefGoogle Scholar

Copyright information

© Springer Basel AG 2012

Authors and Affiliations

  1. 1.Dept. of Computer ScienceUniversity of SzegedSzegedHungary
  2. 2.Inst. für Diskrete MathematikTU WienAustria

Personalised recommendations