Algebra universalis

, Volume 67, Issue 1, pp 1–18 | Cite as

Intrinsic generalized metrics

  • W. C. Holland
  • R. Kopperman
  • H. Pajoohesh


The intrinsic functions of two variables from a lattice-ordered group to itself that are symmetric and right invariant are called its intrinsic metrics. It is known that these are exactly the functions of the form d(x, y) = n|x - y| for some integer n, and that for \({n \geq 1}\) , the triangle inequality for these functions holds if and only if the group is abelian.

Quasimetrics and, more recently, partial metrics (introduced for computer science applications), can be used to express some topologies on ordered sets (such as the usual topology on \({\mathbb{R}}\)) as the join of two subtopologies whose open sets are respectively, upper and lower sets in the order. Thus, it is natural to look at intrinsic “partial metrics” and “quasimetrics” on lattice-ordered groups. Here, we define and characterize these intrinsic generalized metrics and obtain results relating commutativity to their key properties such as the triangle inequality.

2010 Mathematics Subject Classification

Primary: 06F15 Secondary: 06F20 32F45 

Key words and phrases

lattice-ordered groups abelian lattice-ordered groups intrinsic metrics generalized metrics quasimetrics partial metrics 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Anderson, M., Feil, T.: Lattice-Ordered Groups. D. Reidel (1988)Google Scholar
  2. 2.
    Birkhoff, G.: Lattice Theory, 3rd edn. American Mathematical Society Colloquium Publications, vol. 25. American Mathematical Society, Providence (1967)Google Scholar
  3. 3.
    Darnel M.R.: Theory of Lattice-Ordered Groups. Marcel Dekker, New York (1995)MATHGoogle Scholar
  4. 4.
    Holland W.C.: Intrinsic metrics for lattice-ordered groups. Algebra Universalis 19, 142–150 (1984)MathSciNetMATHCrossRefGoogle Scholar
  5. 5.
    Holland W.C., Mekler A.H., Reilly N.R.: Varieties of lattice-ordered groups in which prime powers commute. Algebra Universalis 23, 196–214 (1986)MathSciNetMATHCrossRefGoogle Scholar
  6. 6.
    Jasem M.: Intrinsic metric preserving maps on partially ordered groups. Algebra Universalis 36, 135–140 (1996)MathSciNetMATHCrossRefGoogle Scholar
  7. 7.
    Kalman J.A.: Triangle inequality in ℓ-groups. Proc. Amer. Math. Soc. 11, 395 (1960)MathSciNetMATHGoogle Scholar
  8. 8.
    Kelley, J.L.: General Topology. D. van Nostrand (1955)Google Scholar
  9. 9.
    Kopperman R.: All topologies come from generalized metrics. Amer. Math. Monthly 95, 89–97 (1988)MathSciNetMATHCrossRefGoogle Scholar
  10. 10.
    Kopperman R., Matthews S., Pajoohesh H.: Universal partial metrizability. Applied General Topology 5, 115–127 (2004)MathSciNetMATHGoogle Scholar
  11. 11.
    Kopperman R., Matthews S., Pajoohesh H.: Completions of partial metrics into value lattices. Topology Appl. 156, 1534–1544 (2009)MathSciNetMATHCrossRefGoogle Scholar
  12. 12.
    Kopperman R., Pajoohesh H., Richmond T.: Topologies arising from metrics valued in abelian ℓ-groups. Algebra Universalis 65, 315–330 (2011)MathSciNetMATHCrossRefGoogle Scholar
  13. 13.
    Lasalle J.P.: Topology based upon the concept of pseudo-norm. Proc. Nat. Acad. Sci. 27, 448–451 (1941)MathSciNetMATHCrossRefGoogle Scholar
  14. 14.
    Matthews, S.G.: Partial metric topology. In: Papers on general topology and applications (Flushing, NY, 1992). Ann. New York Acad. Sci., vol. 728, pp. 183–197. New York Acad. Sci., New York (1994)Google Scholar
  15. 15.
    Weinberg E.C.: Free lattice-ordered abelian groups. Math. Ann. 151, 187–199 (1963)MathSciNetMATHCrossRefGoogle Scholar

Copyright information

© Springer Basel AG 2012

Authors and Affiliations

  1. 1.Department of MathematicsUniversity of ColoradoBoulderUSA
  2. 2.Department of MathematicsThe City College of New YorkCUNYUSA
  3. 3.Department of MathematicsMedgar Evers CollegeCUNY, BrooklynUSA

Personalised recommendations