Algebra universalis

, Volume 66, Issue 4, pp 331–336 | Cite as

Multisorted dualisability: change of base

  • B. A. Davey
  • M. J. Gouveia
  • M. Haviar
  • H. A. Priestley


We prove that if a quasivariety \({\mathcal{A}}\) generated by a finite family \({\mathcal{M}}\) of finite algebras has a multisorted duality based on \({\mathcal{M}}\), then \({\mathcal{A}}\) has a multisorted duality based on any finite family of finite algebras that generates it.

2010 Mathematics Subject Classification

Primary: 08C20 Secondary: 08C15 

Key words and phrases

natural duality dualisability 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Clark D.M., Davey B.A.: Natural Dualities for the Working Algebraist. Cambridge University Press, Cambridge (1998)MATHGoogle Scholar
  2. 2.
    Davey B.A., Haviar M., Priestley H.A.: Endoprimal distributive lattices are endodualisable. Algebra Universalis 34, 444–453 (1995)MathSciNetMATHCrossRefGoogle Scholar
  3. 3.
    Davey B.A., Priestley H.A.: Generalised piggyback dualities and applications to Ockham algebras. Houston J. Math. 13, 151–198 (1987)MathSciNetMATHGoogle Scholar
  4. 4.
    Davey B.A., Willard R.: The dualisability of a quasi-variety is independent of the generating algebra. Algebra Universalis 45, 103–106 (2001)MathSciNetMATHCrossRefGoogle Scholar
  5. 5.
    Priestley H.A.: Representation of distributive lattices by means of ordered Stone spaces. Bull. London Math. Soc. 2, 186–190 (1970)MathSciNetMATHCrossRefGoogle Scholar
  6. 6.
    Saramago M.J.: Some remarks on dualisability and endodualisability. Algebra Universalis 43, 197–212 (2000)MathSciNetMATHCrossRefGoogle Scholar

Copyright information

© Springer Basel AG 2011

Authors and Affiliations

  • B. A. Davey
    • 1
  • M. J. Gouveia
    • 2
  • M. Haviar
    • 3
  • H. A. Priestley
    • 4
  1. 1.Department of Mathematics and StatisticsLa Trobe UniversityVictoriaAustralia
  2. 2.Faculdade de Ciências da Universidade de Lisboa & CAULLisboaPortugal
  3. 3.Faculty of Natural SciencesM Bel UniversityBanská BystricaSlovakia
  4. 4.Mathematical InstituteUniversity of OxfordOxfordUnited Kingdom

Personalised recommendations