Algebra universalis

, Volume 64, Issue 3–4, pp 349–377 | Cite as

A decomposition theory for complete modular meet-continuous lattices

  • Harold Simmons


Motivated by a technique from ring theory, I describe a way of decomposing intervals of a certain kind of complete lattice into an independent union of small intervals. After developing the general lattice theoretic technique, I apply the method to geo-lattices, a certain kind of complemented complete lattice.

2010 Mathematics Subject Classification

Primary: 06B05 Secondary: 06Cxx 

Keywords and phrases

lattice decomposition associated points 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Crawley, P., Dilworth, R.P.: Algebraic theory of lattices. Prentice Hall (1973)Google Scholar
  2. 2.
    Fisher J.W.: Decomposition theories for modules. Transactions of the American Mathematical Society 145, 241–269 (1969)CrossRefMATHMathSciNetGoogle Scholar
  3. 3.
    Golan, J.S.: Decomposition and dimension in module categories. Marcel Dekker (1977)Google Scholar
  4. 4.
    Goldman O.: Rings and modules of quotients. Journal of Algebra 13, 10–47 (1969)CrossRefMATHMathSciNetGoogle Scholar
  5. 5.
    Grätzer, G.: General lattice theory (second edition). Birkhauser (2003)Google Scholar
  6. 6.
    Isbell J.R.: Meet-continuous lattices. Sympos. Math. 16, 41–54 (1975)MathSciNetGoogle Scholar
  7. 7.
    Nǎstǎsescu C., van Oystaeyen F.: Dimensions of Ring Theory. D. Reidel, Dordrecht, Holland (1987)Google Scholar
  8. 8.
    Popescu, N.: Abelian categories with applications to rings and modules. Academic Press (1973)Google Scholar
  9. 9.
    Riley J.A.: Axiomatic primary and tertiary decomposition theory. Transactions of the American Mathematical Society 105, 177–201 (1962)CrossRefMATHMathSciNetGoogle Scholar
  10. 10.
    Simmons H.: Torsion theoretic points and spaces. Proc, Royal. Soc. Edinburgh 96A, 345–361 (1984)MathSciNetGoogle Scholar
  11. 11.
    Simmons H.: Near-discreteness of modules and spaces as measured by Gabriel and Cantor. J. Pure and Applied Algebra 65, 119–162 (1989)CrossRefMathSciNetGoogle Scholar
  12. 12.
    Simmons H.: The extended Cantor-Bendixson analysis of trees. Algebra Univers. 52, 439–468 (2004)CrossRefMATHMathSciNetGoogle Scholar

Copyright information

© Springer Basel AG 2011

Authors and Affiliations

  1. 1.School of MathematicsThe UniversityManchesterEngland

Personalised recommendations