Algebra universalis

, Volume 64, Issue 1–2, pp 39–48 | Cite as

On groups of hypersubstitutions

  • Jonathan D. H. Smith


Groups of (proper) hypersubstitutions are symmetries of algebraic theories. Symmetry at this abstract level is broken at the level of concrete algebras, because the complexity of operations may vary over the orbits of a hypersubstitution group.

2000 Mathematics Subject Classification

Primary: 08A40 Secondary: 20B25 20M30 20N05 

Keywords and phrases

hypersubstitution lattice one-way function quasigroup hyperquasigroup loop transversal Catalan loop 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Belousov V.D.: Systems of quasigroups with generalized identities. Uspekhi Mat. Nauk 20, 75–146 (1965) (Russian)MATHMathSciNetGoogle Scholar
  2. 2.
    Denecke K., Lau D., Pöschel R., Schwiegert D.: Hyperidentities, hyperequational classes, and clone congruences. Contributions to General Algebra 7, 97–118 (1991)Google Scholar
  3. 3.
    Denecke, K., Wismath, S.L.: Hyperidentities and Clones. Gordon and Breach, Amsterdam (2000)Google Scholar
  4. 4.
    Levin, L.A.: The tale of one-way functions. English version of: One-way functions. Problemy Peredachi Informatsii 39, 82–103 (2003) (Russian)
  5. 5.
    Long, L., Smith, J.D.H.: Catalan loops. Math. Proc. Camb. Phil. Soc., to appearGoogle Scholar
  6. 6.
    Movsisyan Yu.M.: Introduction to the Theory of Algebras with Hyperidentities. Yerevan University Press, Yerevan (1986) (Russian)MATHGoogle Scholar
  7. 7.
    Movsisyan Yu.M.: Hyperidentities and Hypervarieties in Algebra. Yerevan University Press, Yerevan (1990) (Russian)Google Scholar
  8. 8.
    Płonka, J.: Proper and inner hypersubstitutions of algebras. In: Proceedings of the International Conference Summer School on General Algebra and Ordered Sets (Olomouc 1994) pp. 106–116.Google Scholar
  9. 9.
    Smith J.D.H.: Ternary quasigroups and the modular group. Comment. Math. Univ. Carol. 49, 309–317 (2008)MATHGoogle Scholar
  10. 10.
    Smith J.D.H., Romanowska A.B.: Post-Modern Algebra. Wiley, New York, NY (1999)MATHGoogle Scholar
  11. 11.
    Solodovnikov V.I.: Upper bounds on the complexity of solving systems of linear equations Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI), AN SSSR 118, 159–187 (1982) (Russian)MATHMathSciNetGoogle Scholar
  12. 12.
    Strassen V.: Gaussian elimination is not optimal. Numer. Math. 13, 354–356 (1969)MATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Taylor W.: Hyperidentities and hypervarieties. Aeuationes Mathematicae 23, 111–127 (1981)Google Scholar

Copyright information

© Springer Basel AG 2010

Authors and Affiliations

  1. 1.Department of MathematicsIowa State UniversityAmesU.S.A.

Personalised recommendations