Advertisement

Algebra universalis

, Volume 63, Issue 2–3, pp 243–260 | Cite as

On universal categories of coalgebras

  • Věra Trnková
  • Jiří Sichler
Article
  • 35 Downloads

Abstract

A category \({\mathcal{K}}\) is called universal if for every accessible functor F : Set → Set the category of all F-coalgebras and the category of all F-algebras can be fully embedded into \({\mathcal{K}}\). We prove that for a functor G preserving intersections, the category Coalg G of all G-coalgebras is universal unless the functor G is linear, that is, of the form GX = X × A + B for some fixed sets A and B. Other types of universality are also investigated.

2000 Mathematics Subject Classification

Primary: 08B25 Secondary: 18B15 

Keywords and phrases

categories of coalgebras full embedding universal category 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Adámek, J., Porst, H.E.: From varieties of algebras to covarieties of coalgebras. Electronic Notes in Theoretical Computer Science 233 (2001)Google Scholar
  2. 2.
    Adámek J., Porst H.E.: On tree coalgebras and coalgebra presentations. Theoret. Comput. Sci. 311, 257–283 (2004)MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Adámek J., Rosický J.: Locally Presentable and Accessible Categories. Cambridge University Press, Cambridge (1994)MATHCrossRefGoogle Scholar
  4. 4.
    Adámek J., Trnková V.: Automata and Algebras in Categories. Kluwer, Dordrecht (1989)Google Scholar
  5. 5.
    Adams M.E., Dziobiak W.: Endomorphisms of monadic Boolean algebras. Algebra Universalis 57, 131–142 (2007)MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Birkhoff G.: On groups of automorphisms. Revista Unión Math. Argentina 11, 155–157 (1946) (Spanish)MATHMathSciNetGoogle Scholar
  7. 7.
    Dow, A., Hart, K.P.: The Čech-Stone compactification of \({\mathbb{N}\, {\rm and}\,\mathbb{R}}\). In: Hart, K.P., Nagata, J., Vaughan, J.P. (eds.) Encyclopedia of General Topology, pp. 213–217. Elsevier (2004)Google Scholar
  8. 8.
    Freyd P.J.: Concreteness. J. Pure Appl. Algebra 3, 171–191 (1973)MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Frucht R.: Herstellung von Graphen mit vorgegebener abstrakter Gruppe. Compos. Math. 6, 239–250 (1938)MATHMathSciNetGoogle Scholar
  10. 10.
    deGroot J.: Groups represented by homeomorphism groups. Math. Ann. 138, 80–102 (1959)CrossRefMathSciNetGoogle Scholar
  11. 11.
    Gumm H.-P.: Elements of general theory of coalgebras. LUATCS99, Rand Afrikaans University, Johannesburg (1999)Google Scholar
  12. 12.
    Gumm, H.-P.: From T-coalgebras to filter structures and transition systems. CALCO 2005, LNCS 3629 (1999)Google Scholar
  13. 13.
    Gumm H.-P., Schröder T.: Types and coalgebraic structure. Algebra Universalis 53, 229–252 (2005)MATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Hedrlín Z., Sichler J.: Any boundable binding category contains a proper class of mutually disjoint copies of itself. Algebra Universalis 1, 97–103 (1971)MATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Isbell, J.R.: Subobjects, adequacy completeness and categories of algebras. Rozprawy Matematyczne 36 (1960)Google Scholar
  16. 16.
    Kahawara Y., Mori M.: A small final coalgebra theorem. Theoret. Comput. Sci. 233, 129–145 (2000)CrossRefMathSciNetGoogle Scholar
  17. 17.
    Katětov M.: A theorem on mappings. Comment. Math. Univ. Carolin. 8, 431–433 (1296)Google Scholar
  18. 18.
    Koubek V.: On categories into which each concrete category can be embedded. Cahiers Topologie Géom. Diff. 17, 33–57 (1976)MATHMathSciNetGoogle Scholar
  19. 19.
    Koubek V.: Full embeddability into categories of generalized algebras. Algebra Universalis 17, 1–20 (1983)MATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    Kučera L.: Every category is a factorization of a concrete one. J. Pure Appl. Algebra 1, 373–376 (1971)MATHCrossRefMathSciNetGoogle Scholar
  21. 21.
    Marvan M.: On covarieties of coalgebras. Arch. Math. (Brno) 21, 51–64 (1985)MATHMathSciNetGoogle Scholar
  22. 22.
    Pultr A., Trnková V.: Combinatorial, Algebraic and Topological Representations of Groups, Semigroups and Categories. North-Holland, Amsterdam (1980)MATHGoogle Scholar
  23. 23.
    Rutten J.J.M.M.: Universal coalgebra: a theory of systems. Theoret. Comput. Sci. 249, 3–80 (2000)MATHCrossRefMathSciNetGoogle Scholar
  24. 24.
    Sabidussi G.: Graphs with given infinite groups. Monatsh. Math. 64, 64–67 (1960)MATHCrossRefMathSciNetGoogle Scholar
  25. 25.
    Shelah S., Rudin M.E.: Unordered types of ultrafilters. Topology Proc. 3, 199–204 (1978)MathSciNetGoogle Scholar
  26. 26.
    Székely Z.: Maximal clones of co-operations. Acta Sci. Math. (Szeged) 53, 43–50 (1989)MATHMathSciNetGoogle Scholar
  27. 27.
    Trnková V.: Universal categories. Comment. Math. Univ. Carolin. 7, 143–206 (1966)MATHGoogle Scholar
  28. 28.
    Trnková V.: Some properties of set functors. Comment. Math. Univ. Carolin. 10, 323–352 (1969)MATHGoogle Scholar
  29. 29.
    Trnková V.: On descriptive classification of set functors. Part I. Comment. Math. Univ. Carolin. 12, 143–174 (1971)MATHGoogle Scholar

Copyright information

© Springer Basel AG 2010

Authors and Affiliations

  1. 1.Mathematical Institute of Charles UniversityPraha 8Czech Republic
  2. 2.Department of MathematicsUniversity of ManitobaWinnipegCanada

Personalised recommendations