PAX5 activates telomerase activity and proliferation in keloid fibroblasts by transcriptional regulation of SND1, thus promoting keloid growth in burn-injured skin



Staphylococcal nuclease domain-containing 1 (SND1) that functioned as an oncogene in a variety of tumors was upregulated in burn-injured skin tissues, and this study aims to investigate the effect of SND1 on keloid and elucidate the underlying mechanism.


Keloid fibroblasts (KFs) and normal skin fibroblasts (NFs) were isolated from the keloid tissues and adjacent normal skin tissues of keloid patients. The SND1 expression was assessed in keloid tissues and KFs with Western blot assay. Gain- and loss-of-function experiments were performed to investigate the role of SND1 in proliferation, colony formation, telomerase activity, expression of fibrogenic genes and production of pro-inflammatory factors in KFs. Chromatin immunoprecipitation (CHIP) and Dual-luciferase reporter gene assays were used to verify the interaction of Paired-box gene 5 (PAX5) on SND1 promoter. Then, a series of rescue experiments were performed to verify the effects of SND1 overexpression on PAX5 knockdown-mediated KF functions. Finally, the role of SND1 in keloid formation in vivo was validated in mice with keloid implantation.


SND1 was upregulated in keloid tissues and KFs. SND1 positively regulated proliferation, colony formation, telomerase activity, production of pro-inflammatory factors and expression of fibrogenic genes. PAX5 directly bound to the SND1 promoter to transcriptionally regulate SND1 expression and positively regulated SND1-mediated KF functions via the ERK/JNK pathway. In vivo assay further demonstrated that SND1 displayed a positive effect on keloid formation.


SND1 transcriptionally regulated by PAX5 promotes keloid formation through activating telomerase activity via the ERK/JNK signaling pathways, which provides a promising therapeutic target for clinical treatment of burned skin keloid.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7



Staphylococcal nuclease domain-containing 1


Paired-box gene 5


Chromatin immunoprecipitation


Keloid fibroblasts


Normal fibroblasts


Cell Counting Kit-8


Quantitative real-time polymerase chain reaction


Telomeric repeat amplification protocol


One-way analysis of variance


Mitogen-activated protein kinase


Extracellular signal-regulated kinase


C-Jun N-terminal kinase


Fetal bovine serum


Enzyme linked immunosorbent assay


  1. 1.

    Huang Y, Wang Y, Lin L, Wang P, Jiang L, Liu J, et al. Overexpression of miR-133a-3p inhibits fibrosis and proliferation of keloid fibroblasts by regulating IRF5 to inhibit the TGF-β/Smad2 pathway. Mol Cell Probes. 2020;101563.

  2. 2.

    Boahene K, Brissett AE, Jones LR. Facial plastic surgery controversies: keloids. Fac Plast Surg Clin North Am. 2018;26:105–12.

    Article  Google Scholar 

  3. 3.

    Philandrianos C, Kerfant N, Jaloux C, Martinet L, Bertrand B, Casanova D. Les cicatrices chéloïdes (première partie): une pathologie de la cicatrisation cutanée. Ann Chir Plast Esth. 2016;61:128–35.

    CAS  Article  Google Scholar 

  4. 4.

    Gauglitz GG, Korting HC, Pavicic T, Ruzicka T, Jeschke MG. Hypertrophic scarring and keloids: pathomechanisms and current and emerging treatment strategies. Mol Med. 2011;17:113–25.

    CAS  Article  Google Scholar 

  5. 5.

    Tracy LE, Minasian RA, Caterson EJ. Extracellular matrix and dermal fibroblast function in the healing wound. Adv Wound Care. 2016;5:119–36.

    Article  Google Scholar 

  6. 6.

    Zhang Y, Cheng C, Wang S, Xu M, Zhang D, Zeng W. Knockdown of FOXM1 inhibits activation of keloid fibroblasts and extracellular matrix production via inhibition of TGF-β1/Smad pathway. Life Sci. 2019;232:116637–43.

    CAS  Article  Google Scholar 

  7. 7.

    Vincent AS, Phan TT, Mukhopadhyay A, Lim HY, Halliwell B, Wong KP. Human skin keloid fibroblasts display bioenergetics of cancer cells. J Invest Dermatol. 2008;128:702–9.

    CAS  Article  Google Scholar 

  8. 8.

    McEachern MJ, Krauskopf A, Blackburn EH. Telomeres and their control. Annu Rev Genet. 2000;34:331–58.

    CAS  Article  Google Scholar 

  9. 9.

    De Felice B, Wilson RR, Nacca M. Telomere shortening may be associated with human keloids. BMC Med Genet. 2009;10:110–5.

    Article  Google Scholar 

  10. 10.

    Huang Y, Lin LX, Bi QX, Wang P, Wang XM, Liu J, et al. Effects of hTERT antisense oligodeoxynucleotide on cell apoptosis and expression of hTERT and bcl-2 mRNA in keloid fibroblasts. Eur Rev Med Pharmacol Sci. 2017;21:1944–51.

    CAS  PubMed  Google Scholar 

  11. 11.

    Yu L, Di Y, Xin L, Ren Y, Liu X, Sun X, et al. SND1 acts as a novel gene transcription activator recognizing the conserved Motif domains of Smad promoters, inducing TGFβ1 response and breast cancer metastasis. Oncogene. 2017;36:3903–14.

    CAS  Article  Google Scholar 

  12. 12.

    Kannan N, Eaves CJ. Tipping the balance: MTDH-SND1 curbs oncogene-induced apoptosis and promotes tumorigenesis. Cell Stem Cell. 2014;15:118–20.

    CAS  Article  Google Scholar 

  13. 13.

    Cappellari M, Bielli P, Paronetto MP, Ciccosanti F, Fimia GM, Saarikettu J, et al. The transcriptional co-activator SND1 is a novel regulator of alternative splicing in prostate cancer cells. Oncogene. 2014;33:3794–802.

    CAS  Article  Google Scholar 

  14. 14.

    Yin J, Ding J, Huang L, Tian X, Shi X, Zhi L, et al. SND1 affects proliferation of hepatocellular carcinoma cell line SMMC-7721 by regulating IGFBP3 expression. Anat Rec. 2013;296:1568–75.

    CAS  Article  Google Scholar 

  15. 15.

    Navarro-Imaz H, Ochoa B, García-Arcos I, Martínez MJ, Chico Y, Fresnedo O, et al. Molecular and cellular insights into the role of SND1 in lipid metabolism. Biochim Biophys Acta. 2020;1865:158589.

    CAS  Article  Google Scholar 

  16. 16.

    Shao J, Gao F, Zhang B, Zhao M, Zhou Y, He J, et al. Aggregation of SND1 in stress granules is associated with the microtubule cytoskeleton during heat shock stimulus. Anat Rec. 2017;300:2192–9.

    CAS  Article  Google Scholar 

  17. 17.

    Qin G, Song Y, Guo Y, Sun Y, Zeng W. LincRNA TINCR facilitates excessive proliferation and inflammation in post-burn skin fibroblasts by directly binding with SND1 protein and inducing SND1-mediated TGF-β1 expression. Biochem Biophys Res Commun. 2019;509:903–10.

    CAS  Article  Google Scholar 

  18. 18.

    Su C, Gao X, Yang W, Zhao Y, Fu X, Cui X, et al. Phosphorylation of Tudor-SN, a novel substrate of JNK, is involved in the efficient recruitment of Tudor-SN into stress granules. Biochim Biophys Acta. 2017;1864:562–71.

    CAS  Article  Google Scholar 

  19. 19.

    Herbert BS, Hochreiter AE, Wright WE, Shay JW. Nonradioactive detection of telomerase activity using the telomeric repeat amplification protocol. Nat Protoc. 2006;1:1583–90.

    CAS  Article  Google Scholar 

  20. 20.

    Armengol S, Arretxe E, Enzunza L, Llorente I, Mendibil U, Navarro-Imaz H, et al. SREBP-2-driven transcriptional activation of human SND1 oncogene. Oncotarget. 2017;8:108181–94.

    Article  Google Scholar 

  21. 21.

    Su C, Zhang C, Tecle A, Fu X, He J, Song J, et al. Tudor staphylococcal nuclease (Tudor-SN), a novel regulator facilitating G1/S phase transition, acting as a co-activator of E2F–1 in cell cycle regulation. J Biol Chem. 2015;290:7208–20.

    CAS  Article  Google Scholar 

  22. 22.

    Xin L, Zhao R, Lei J, Song J, Yu L, Gao R, et al. SND1 acts upstream of SLUG to regulate the epithelial-mesenchymal transition (EMT) in SKOV3 cells. Faseb j. 2019;33:3795–806.

    CAS  Article  Google Scholar 

  23. 23.

    Santhekadur PK, Akiel M, Emdad L, Gredler R, Srivastava J, Rajasekaran D, et al. Staphylococcal nuclease domain containing-1 (SND1) promotes migration and invasion via angiotensin II type 1 receptor (AT1R) and TGFβ signaling. FEBS Open Bio. 2014;4:353–61.

    CAS  Article  Google Scholar 

  24. 24.

    Liu CD, Lee HL, Peng CW. B cell-specific transcription activator pax5 recruits p300 to support ebna1-driven transcription. J Virol. 2020;94:e02028.

    PubMed  PubMed Central  Google Scholar 

  25. 25.

    Balasenthil S, Gururaj AE, Talukder AH, Bagheri-Yarmand R, Arrington T, Haas BJ, et al. Identification of Pax5 as a target of MTA1 in B-cell lymphomas. Cancer Res. 2007;67:7132–8.

    CAS  Article  Google Scholar 

  26. 26.

    Ren Y, Hou J, Xu A, Pan Y. Diagnostic utility of PAX2 and PAX5 in distinguishing non-small cell lung cancer from small cell lung cancer. Int J Clin Exp Pathol. 2015;8:14709–16.

    PubMed  PubMed Central  Google Scholar 

  27. 27.

    Dong BW, Zhang WB, Qi SM, Yan CY, Gao J. Transactivation of PTGS2 by PAX5 signaling potentiates cisplatin resistance in muscle-invasive bladder cancer cells. Biochem Biophys Res Commun. 2018;503:2293–300.

    CAS  Article  Google Scholar 

  28. 28.

    Li X, Cheung KF, Ma X, Tian L, Zhao J, Go MY, et al. Epigenetic inactivation of paired box gene 5, a novel tumor suppressor gene, through direct upregulation of p53 is associated with prognosis in gastric cancer patients. Oncogene. 2012;31:3419–30.

    CAS  Article  Google Scholar 

  29. 29.

    Benzina S, Beauregard AP, Guerrette R, Jean S, Faye MD, Laflamme M, et al. Pax-5 is a potent regulator of E-cadherin and breast cancer malignant processes. Oncotarget. 2017;8:12052–66.

    Article  Google Scholar 

  30. 30.

    Song J, Zhang H, Wang Z, Xu W, Zhong L, Cao J, et al. The role of FABP5 in radiation-induced human skin fibrosis. Radiat Res. 2018;189:177–86.

    CAS  Article  Google Scholar 

  31. 31.

    Blasco MA. Telomeres and cancer: a tale with many endings. Curr Opin Genet Dev. 2003;13:70–6.

    CAS  Article  Google Scholar 

  32. 32.

    Antoniou KM, Samara KD, Lasithiotaki I, Margaritopoulos GA, Soufla G, Lambiri I, et al. Differential telomerase expression in idiopathic pulmonary fibrosis and non-small cell lung cancer. Oncol Rep. 2013;30:2617–24.

    CAS  Article  Google Scholar 

  33. 33.

    Leão R, Apolónio JD, Lee D, Figueiredo A, Tabori U, Castelo-Branco P. Mechanisms of human telomerase reverse transcriptase (hTERT) regulation: clinical impacts in cancer. J Biomed Sci. 2018;25:22–33.

    Article  Google Scholar 

  34. 34.

    Che Y, Li Y, Zheng F, Zou K, Li Z, Chen M, et al. TRIP4 promotes tumor growth and metastasis and regulates radiosensitivity of cervical cancer by activating MAPK, PI3K/AKT, and hTERT signaling. Cancer Lett. 2019;452:1–13.

    CAS  Article  Google Scholar 

  35. 35.

    Bougel S, Renaud S, Braunschweig R, Loukinov D, Morse HC 3rd, Bosman FT, et al. PAX5 activates the transcription of the human telomerase reverse transcriptase gene in B cells. J Pathol. 2010;220:87–96.

    CAS  Article  Google Scholar 

  36. 36.

    Wang W, Li G, Yang H. Role of mitogen-activated protein kinases in the formation of hypertrophic scar with model of lipopolysaccharide stimulated skin fibroblast cells. Pakistan J Med Sci. 2018;34:215–20.

    Google Scholar 

  37. 37.

    Shi L, Chang Y, Yang Y, Zhang Y, Yu FS, Wu X. Activation of JNK signaling mediates connective tissue growth factor expression and scar formation in corneal wound healing. PLoS ONE. 2012;7:32128–37.

    Article  Google Scholar 

  38. 38.

    Cui J, Li Z, Jin C, Jin Z. Knockdown of fibronectin extra domain B suppresses TGF-β1-mediated cell proliferation and collagen deposition in keloid fibroblasts via AKT/ERK signaling pathway. Biochem Biophys Res Commun. 2020;526:1131–7.

    CAS  Article  Google Scholar 

  39. 39.

    Kim KH, Park B, Rhee DK, Pyo S. Acrylamide induces senescence in macrophages through a process involving ATF3, ROS, p38/JNK, and a telomerase-independent pathway. Chem Res Toxicol. 2015;28:71–86.

    CAS  Article  Google Scholar 

  40. 40.

    Hung YC, Pan TL, Hu WL. Roles of reactive oxygen species in anticancer therapy with Salvia miltiorrhiza bunge. Oxid Med Cell Longev. 2016;2016:1–10.

    Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Yong Song.

Ethics declarations

Conflict of interest

There is no conflict of interest to be declared by the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 17 KB)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Qin, G., Sun, Y., Guo, Y. et al. PAX5 activates telomerase activity and proliferation in keloid fibroblasts by transcriptional regulation of SND1, thus promoting keloid growth in burn-injured skin. Inflamm. Res. (2021).

Download citation


  • Keloid
  • SND1
  • PAX5
  • Telomerase activity
  • Burn
  • Transcriptional regulation