Skip to main content

Advertisement

Log in

Organ crosstalk: the potent roles of inflammation and fibrotic changes in the course of organ interactions

  • Review
  • Published:
Inflammation Research Aims and scope Submit manuscript

Abstract

Background

Organ crosstalk can be defined as the complex and mutual biological communication between distant organs mediated by signaling factors. Normally, crosstalk helps to coordinate and maintain homeostasis, but sudden or chronic dysfunction in any organ causes dysregulation in another organ. Many signal molecules, including cytokines and growth factors, are involved in the metabolic dysregulation, and excessive or inappropriate release of these molecules leads to organ dysfunction or disease (e.g., obesity, type 2 diabetes).

Aim and method

The aim of this review is to reveal the impact of organ crosstalk on the pathogenesis of diseases associated with organ interactions and the role of inflammatory and fibrotic changes in the organ dysfunction. After searching in MEDLINE, PubMed and Google Scholar databases using ‘organ crosstalk’ as a keyword, studies related to organ crosstalk and organ interaction were compiled and examined.

Conclusion

The organ crosstalk and the functional integration of organ systems are exceedingly complex processes. Organ crosstalk contributes to metabolic homeostasis and affects the inflammatory response, related pathways and fibrotic changes. As in the case of interactions between adipose tissue and intestine, stimulation of inflammatory mechanisms plays an active role in the development of diseases including insulin resistance, obesity, type 2 diabetes and hepatic steatosis. The increased level of knowledge about the ‘crosstalk’ between any organ and distant organs will facilitate the early diagnosis of the disease as well as the management of the treatment practices in the short- and long-term organ dysfunction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

AGEs:

Advanced glycation end products

AKI:

Acute kidney injury

ALI:

Acute lung injury

ANP:

Atrial natriuretic peptide

AP-1:

Activator protein 1

BNP:

B-type natriuretic peptide

CKD:

Chronic kidney disease

COX-2:

Cyclooxygenase-2

CVD:

Cardiovascular disease

CRP:

C-reactive protein

DAMPs:

Damage-associated molecular patterns

DM:

Diabetes mellitus

ECM:

Extracellular matrix

EMT:

Epithelial–mesenchymal transition

ER:

Endoplasmic reticulum

EVs:

Extracellular vesicles

FFA:

Free fatty acids

FGF:

Fibroblast growth factor

FXR:

Farnesoid × receptor

HFD:

High fat diet

HIF-1:

Hypoxia-inducible factor 1

IFN-γ:

Interferon gamma

IR:

Insulin resistance

IRI:

Ischemia/reperfusion injury

IL:

Interleukin

iNOS:

Inducible nitric oxide synthase

JNK:

c-Jun N-terminal kinase

KIM-1:

Kidney injury molecule 1

L-FABP:

Liver-type fatty acid-binding protein

LPS:

Lipopolysaccharides

MAPK:

Mitogen-activated protein kinase

MYD88:

Myeloid differentiation factor 88

NASH:

Non-alcoholic steatohepatitis

NAFLD:

Non-alcoholic fatty liver disease

NF-κB:

Nuclear factor kappa B

NGAL:

Neutrophil gelatinase associated lipocalin

NLRP3:

Nucleotide-binding domain 3

NO:

Nitric oxide

NRF2:

Nuclear factor erythroid 2-related factor 2

NT-proBNP:

N-terminal pro–B-type natriuretic peptide

MIF:

Macrophage migration inhibitory factor

MODS:

Multiple organ dysfunction syndrome

MOF:

Multiple organ failure

PAI-1:

Plasminogen activator inhibitor-1

PAMPs:

Pathogen-associated molecular patterns

PNPLA3:

Patatin-like phospholipase domain-containing 3

PI3:

Phosphatidylinositol 3-kinase

PPAR-γ:

Peroxisome proliferator-activated receptor-γ

ROS:

Reactive oxygen species

SCFAs:

Short change fatty acids

SIRS:

Systemic inflammatory response syndrome

sST2:

Soluble suppressor of tumorigenicity 2

STAT3:

Signal transducer and activator of transcription 3

TECs:

Tubular epithelial cells

TGF-β:

Transforming growth factor

TLR:

Toll-like receptor

TNF-α:

Tumor necrosis factor alpha

TNF-RII:

Tumor necrosis factor receptor II

References

  1. Husain-Syed F, McCullough PA, Birk HW, Renker M, Brocca A, Seeger W, et al. Cardio-pulmonary-renal interactions: a multidisciplinary approach. J Am Coll Cardiol. 2015;65(22):2433–48.

    Article  CAS  PubMed  Google Scholar 

  2. Lane K, Dixon JJ, MacPhee IA, Philips BJ. Renohepatic crosstalk: does acute kidney injury cause liver dysfunction? Nephrol Dial Transplant. 2013;28:1634–47.

    Article  PubMed  Google Scholar 

  3. White LA, Chaudhary R, Moore LJ, Moore FA, Hassoun HT. Surgical sepsis and organ crosstalk: the role of the kidney. J Surg Res. 2011;167:306–15.

    Article  PubMed  Google Scholar 

  4. Kirpich IA, Marsano LS, McClain CJ. Gut–liver axis, nutrition, and non-alcoholic fatty liver disease. Clin Biochem. 2015;48(13–14):923–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Basu RK. Kidney–lung cross-talk and acute kidney injury. Pediatr Nephrol. 2013;28(12):2239–48.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Decleves AE, Sharma K. Obesity and kidney disease: differential effects of obesity on adipose tissue and kidney inflammation and fibrosis. Curr Opin Nephrol Hypertens. 2015;24(1):28–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Schmitz ML, Weber A, Roxlau T, Gaestel M, Kracht M. Signal integration, crosstalk mechanisms and networks in the function of inflammatory cytokines. Biochim Biophys Acta. 2011;1813(12):2165–75.

    Article  CAS  PubMed  Google Scholar 

  8. Guay C, Regazzi R. Exosomes as new players in metabolic organ cross-talk. Diabetes Obes Metab. 2017;19(Suppl 1):137–46.

    Article  PubMed  Google Scholar 

  9. Roberts DD. Extracellular matrix and redox signaling in cellular responses to stress. Antioxid Redox Signal. 2017;27(12):771–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Poole LG, Dolin CE, Arteel GE. Organ–organ crosstalk and alcoholic liver disease. Biomolecules. 2017;7(3):E62. https://doi.org/10.3390/biom7030062.

    Article  CAS  PubMed  Google Scholar 

  11. Jahng JW, Song E, Sweeney G. Crosstalk between the heart and peripheral organs in heart failure. Exp Mol Med. 2016;48:e217. https://doi.org/10.1038/emm.2016.20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Laurenzana I, Lamorte D, Trino S, De Luca L, Ambrosino C, Zoppoli P, et al. Extracellular vesicles: a new prospective in crosstalk between microenvironment and stem cells in hematological malignancies. Stem Cells Int. 2018;2018:9863194. https://doi.org/10.1155/2018/9863194.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Yanez-Mo M, Siljander PR, Andreu Z, et al. Biological properties of extracellular vesicles and their physiological functions. J Extracell Vesicles. 2015;4:27066.

    Article  PubMed  Google Scholar 

  14. Liu T, Zhang L, Joo D, Sun SC. NF-κB signaling in inflammation. Signal Transduct Target Ther. 2017;2:17023. https://doi.org/10.1038/sigtrans.2017.23.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Zhao J, Lawless MW. Stop feeding cancer: pro-inflammatory role of visceral adiposity in liver cancer. Cytokine. 2013;64(3):626–37.

    Article  CAS  PubMed  Google Scholar 

  16. Franceschi C, Garagnani P, Parini P, Giuliani C, Santoro A. Inflammaging: a new immune-metabolic viewpoint for age-related diseases. Nat Rev Endocrinol. 2018;14(10):576–90.

    Article  CAS  PubMed  Google Scholar 

  17. Duvigneau JC, Luis A, Gorman AM, Samali A, Kaltenecker D, Moriggl R, et al. Crosstalk between inflammatory mediators and endoplasmic reticulum stress in liver diseases. Cytokine. 2018;1:2. https://doi.org/10.1016/j.cyto.2018.10.018.

    Article  CAS  Google Scholar 

  18. Abais JM, Xia M, Zhang Y, Boini KM, Li P-L. Redox regulation of NLRP3 inflammasomes: ROS as trigger or effector? Antioxid Redox Signal. 2015;22:1111–29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Guo H, Callaway JB, Ting JP. Inflammasomes: mechanism of action, role in disease, and therapeutics. Nat Med. 2015;21:677–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Lamouille S, Xu J, Derynck R. Molecular mechanisms of epithelial–mesenchymal transition. Nat Rev Mol Cell Biol. 2014;15(3):178–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Weiskirchen R, Weiskirchen S, Tacke F. Organ and tissue fibrosis: molecular signals, cellular mechanisms and translational implications. Mol Aspects Med. 2019;65:2–15. https://doi.org/10.1016/j.mam.2018.06.003.

    Article  CAS  PubMed  Google Scholar 

  22. Mann CJ, Perdiguero E, Kharraz Y, Aguilar S, Pessina P, Serrano AL, et al. Aberrant repair and fibrosis development in skeletal muscle. Skelet Muscle. 2011;1(1):21. https://doi.org/10.1186/2044-5040-1-21.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Kitade H, Chen G, Ni Y, Ota T. Nonalcoholic fatty liver disease and insulin resistance: new insights and potential new treatments. Nutrients. 2017;9(4):E387. https://doi.org/10.3390/nu9040387.

    Article  CAS  PubMed  Google Scholar 

  24. Stern JH, Rutkowski JM, Scherer PE. Adiponectin, leptin, and fatty acids in the maintenance of metabolic homeostasis through adipose tissue crosstalk. Cell Metab. 2016;23(5):770–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Bashiardes S, Shapiro H, Rozin S, Shibolet O, Elinav E. Non-alcoholic fatty liver and the gut microbiota. Mol Metab. 2016;5(9):782–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Zhang X, Ji X, Wang Q, Li JZ. New insight into inter-organ crosstalk contributing to the pathogenesis of non-alcoholic fatty liver disease (NAFLD). Protein Cell. 2018;9(2):164–77.

    Article  CAS  PubMed  Google Scholar 

  27. Tanabe K, Amo-Shiinoki K, Hatanaka M, Tanizawa Y. Interorgan crosstalk contributing to β-cell dysfunction. J Diabetes Res. 2017;2017:3605178. https://doi.org/10.1155/2017/3605178.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Ma M, Duan R, Zhong H, Liang T, Guo L. The crosstalk between fat homeostasis and liver regional immunity in NAFLD. J Immunol Res. 2019;2019:3954890.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Shirakawa J, De Jesus DF, Kulkarni RN. Exploring inter-organ crosstalk to uncover mechanisms that regulate β-cell function and mass. Eur J Clin Nutr. 2017;71(7):896–903.

    Article  CAS  PubMed  Google Scholar 

  30. Utzschneider KM, Kratz M, Damman CJ, Hullar M. Mechanisms linking the gut microbiome and glucose metabolism. J Clin Endocrinol Metab. 2016;101(4):1445–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Lee YA, Wallace MC, Friedman SL. Pathobiology of liver fibrosis: a translational success story. Gut. 2015;64:830–41.

    Article  CAS  PubMed  Google Scholar 

  32. Miura K, et al. Toll-like receptor 9 promotes steatohepatitis by induction of interleukin-1beta in mice. Gastroenterology. 2010;139(1):323–34.

    Article  CAS  PubMed  Google Scholar 

  33. Patterson EK, Yao LJ, Ramic N, Lewis JF, Cepinskas G, McCaig L, et al. Lung-derived mediators induce cytokine production in downstream organs via an NF-κB dependent mechanism. Mediat Inflamm. 2013;2013:586895. https://doi.org/10.1155/2013/586895.

    Article  CAS  Google Scholar 

  34. Fukazawa K, Lee HT. Updates on hepato-renal syndrome. J Anesth Clin Res. 2013;4(9):352.

    PubMed  PubMed Central  Google Scholar 

  35. Di Lullo L, Bellasi A, Barbera V, Russo D, Russo L, Di Iorio B, et al. Pathophysiology of the cardio-renal syndromes types 1–5: an uptodate. Indian Heart J. 2017;69(2):255–65.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Zou D, Wu W, He Y, Ma S, Gao J. The role of klotho in chronic kidney disease. BMC Nephrol. 2018;19(1):285.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Lee SA, Cozzi M, Bush EL, Rabb H. Distant organ dysfunction in acute kidney injury: a review. Am J Kidney Dis. 2018;72(6):846–56.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Shiao CC, Wu PC, Huang TM, Lai TS, Yang WS, Wu CH, et al. Long-term remote organ consequences following acute kidney injury. Crit Care. 2015;19:438. https://doi.org/10.1186/s13054-015-1149-5.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Virzi GM, Day S, de Cal M, Vescovo G, Ronco C. Heart–kidney crosstalk and role of humoral signaling in critical illness. Crit Care. 2014;18:201.

    Article  PubMed  PubMed Central  Google Scholar 

  40. White LE, Hassoun HT. Inflammatory mechanisms of organ crosstalk during ischemic acute kidney injury. Int J Nephrol. 2012;2012:505197. https://doi.org/10.4061/2012/505197.

    Article  PubMed  Google Scholar 

  41. Sharfuddin AA, Molitoris BA. Pathophysiology of ischemic acute kidney injury. Nat Rev Nephrol. 2011;7(4):189–200.

    Article  CAS  PubMed  Google Scholar 

  42. Trostel J, Garcia GE. Endogenous ınhibitors of kidney ınflammation. J Nephrol Res. 2015;1(2):61–8.

    PubMed  PubMed Central  Google Scholar 

  43. Liu Y. Cellular and molecular mechanisms of renal fibrosis. Nat Rev Nephrol. 2011;7:684–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Zhou D, Liu Y. Renal fibrosis in 2015: understanding the mechanisms of kidney fibrosis. Nat Rev Nephrol. 2016;12:68–70.

    Article  CAS  PubMed  Google Scholar 

  45. Qi R, Yang C. Renal tubular epithelial cells: the neglected mediator of tubulointerstitial fibrosis after injury. Cell Death Dis. 2018;9(11):1126.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Cantaluppi V, Quercia AD, Dellepiane S, Ferrario S, Camussi G, Biancone L. Interaction between systemic inflammation and renal tubular epithelial cells. Nephrol Dial Transplant. 2014;29(11):2004–11.

    Article  CAS  PubMed  Google Scholar 

  47. Dellepiane S, Marengo M, Cantaluppi V. Detrimental cross-talk between sepsis and acute kidney injury: new pathogenic mechanisms, early biomarkers and targeted therapies. Crit Care. 2016;20:61. https://doi.org/10.1186/s13054-016-1219-3.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Kooman JP, Dekker MJ, Usvyat LA, Kotanko P, van der Sande FM, Schalkwijk CG, et al. Inflammation and premature aging in advanced chronic kidney disease. Am J Physiol Renal Physiol. 2017;313(4):F938–50.

    Article  PubMed  Google Scholar 

  49. Li X, Hassoun HT, Santora R, Rabb H. Organ crosstalk: the role of the kidney. Curr Opin Crit Care. 2009;15:481–7.

    Article  PubMed  Google Scholar 

  50. Domenech P, Perez T, Saldarini A, Uad P, Musso CG. Kidney-lung pathophysiological crosstalk: its characteristics and importance. Int Urol Nephrol. 2017;49(7):1211–5.

    Article  CAS  PubMed  Google Scholar 

  51. Husain-Syed F, Slutsky AS, Ronco C. Lung-kidney cross-talk in the critically ill patient. Am J Respir Crit Care Med. 2016;194(4):402–14.

    Article  CAS  PubMed  Google Scholar 

  52. Massey VL, Poole LG, Siow DL, Torres E, Warner NL, Schmidt RH, et al. Chronic alcohol exposure enhances lipopolysaccharide-induced lung injury in mice: potential role of systemic tumor necrosis factor alpha. Alcohol Clin Exp Res. 2015;39(10):1978–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Tashiro H, Shore SA. Obesity and severe asthma. Allergol Int. 2019;68(2):135–42.

    Article  PubMed  Google Scholar 

  54. Meiners S, Eickelberg O, Königshoff M. Hallmarks of the ageing lung. Eur Respir J. 2015;45:807–27.

    Article  CAS  PubMed  Google Scholar 

  55. Kathiriya JJ, Nakra N, Nixon J, Patel PS, Vaghasiya V, Alhassani A, et al. Galectin-1 inhibition attenuates profibrotic signaling in hypoxia-induced pulmonary fibrosis. Cell Death Discov. 2017;3:17010. https://doi.org/10.1038/cddiscovery.2017.10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Vasan RS, Sullivan LM, Roubenoff R, Dinarello CA, Harris T, Benjamin EJ, et al. Inflammatory markers and risk of heart failure in elderly subjects without prior myocardial infarction: the Framingham Heart Study. Circulation. 2003;107:1486–91.

    Article  CAS  PubMed  Google Scholar 

  57. Schrier RW. Role of diminished renal function in cardiovascular mortality: marker or pathogenetic factor? J Am Coll Cardiol. 2006;47(1):1–8.

    Article  PubMed  Google Scholar 

  58. Mitaka C, Si MK, Tulafu M, Yu Q, Uchida T, Abe S, et al. Effects of atrial natriuretic peptide on inter-organ crosstalk among the kidney, lung, and heart in a rat model of renal ischemia–reperfusion injury. Intensive Care Med Exp. 2014;2(1):28.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Mozaffari MS, Liu JY, Abebe W, Baban B. Mechanisms of load dependency of myocardial ischemia reperfusion injury. Am J Cardiovasc Dis. 2013;3:180–96.

    PubMed  PubMed Central  Google Scholar 

  60. Marchant DJ, Boyd JH, Lin DC, Granville DJ, Garmaroudi FS, McManus BM. Inflammation in myocardial diseases. Circ Res. 2012;110:126–44.

    Article  CAS  PubMed  Google Scholar 

  61. Kalogeris T, Baines CP, Krenz M, Korthuis RJ. Ischemia/reperfusion, comprehensive. Physiology. 2016;7(1):113–70.

    Google Scholar 

  62. Heusch G, Libby P, Gersh B, Yellon D, Böhm M, Lopaschuk G, et al. Cardiovascular remodelling in coronary artery disease and heart failure. Lancet. 2014;383(9932):1933–43.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Murtha LA, Schuliga MJ, Mabotuwana NS, et al. The processes and mechanisms of cardiac and pulmonary fibrosis. Front Physiol. 2017;8:777. https://doi.org/10.3389/fphys.2017.00777.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Van Linthout S, Miteva K, Tschope C. Crosstalk between fibroblasts and inflammatory cells. Cardiovasc Res. 2014;102:258–69.

    Article  CAS  PubMed  Google Scholar 

  65. Piek A, de Boer RA, Sillje HH. The fibrosis-cell death axis in heart failure. Heart Fail Rev. 2016;21(2):199–211.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Bang C, Antoniades C, Antonopoulos AS, Eriksson U, Franssen C, Hamdani N, et al. Intercellular communication lessons in heart failure. Eur J Heart Fail. 2015;17(11):1091–103.

    Article  PubMed  Google Scholar 

  67. Cozzolino M, Ketteler M, Zehnder D. The vitamin D system: a crosstalk between the heart and kidney. Eur J Heart Fail. 2010;12(10):1031–41.

    Article  CAS  PubMed  Google Scholar 

  68. Romacho T, Elsen M, Röhrborn D, Eckel J. Adipose tissue and its role in organ crosstalk. Acta Physiol (Oxf). 2014;210(4):733–53.

    Article  CAS  Google Scholar 

  69. Hussain MA, Akalestou E, Song W-J. Inter-organ communication and regulation of beta cell function. Diabetologia. 2016;59:659–67.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Ghigliotti G, Barisione C, Garibaldi S, Fabbi P, Brunelli C, Spallarossa P, et al. Adipose tissue immune response: novel triggers and consequences for chronic inflammatory conditions. Inflammation. 2014;37(4):1337–53.

    Article  CAS  PubMed  Google Scholar 

  71. Sabio G, Das M, Mora A, Zhang Z, Jun JY, Ko HJ, et al. A stress signaling pathway in adipose tissue regulates hepatic insulin resistance. Science. 2008;322:1539–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Park M, Sweeney G. Direct effects of adipokines on the heart: focus on adiponectin. Heart Fail Rev. 2013;18:631–44.

    Article  CAS  PubMed  Google Scholar 

  73. van der Poorten D, Milner KL, Hui J, Hodge A, Trenell MI, Kench JG, et al. Visceral fat: a key mediator of steatohepatitis in metabolic liver disease. Hepatology. 2008;48:449–57.

    Article  PubMed  Google Scholar 

  74. Lakhani HV, Sharma D, Dodrill MW, Nawab A, Sharma N, Cottrill CL, et al. Phenotypic alteration of hepatocytes in non-alcoholic fatty liver disease. Int J Med Sci. 2018;14:1591–9.

    Article  Google Scholar 

  75. Zhao HL, Sui Y, Guan J, et al. Fat redistribution and adipocyte transformation in uninephrectomized rats. Kidney Int. 2008;74:467–77.

    Article  CAS  PubMed  Google Scholar 

  76. Zhu Q, Scherer PE. Immunologic and endocrine functions of adipose tissue: implications for kidney disease. Nat Rev Nephrol. 2018;14(2):105–20.

    Article  CAS  PubMed  Google Scholar 

  77. Aron-Wisnewsky J, Clement K. The gut microbiome, diet, and links to cardiometabolic and chronic disorders. Nat Rev Nephrol. 2016;12(3):169–81.

    Article  CAS  PubMed  Google Scholar 

  78. Schroeder BO, Backhed F. Signals from the gut microbiota to distant organs in physiology and disease. Nat Med. 2016;22(10):1079–89.

    Article  CAS  PubMed  Google Scholar 

  79. Al Khodor S, Shatat I. Gut microbiome and kidney disease: a bidirectional relationship. Pediatr Nephrol. 2017;32(6):921–31.

    Article  PubMed  Google Scholar 

  80. Poeta M, Pierri L, Vajro P. Gut–liver axis derangement in non-alcoholic fatty liver disease. Children (Basel). 2017;4(8):E66. https://doi.org/10.3390/children4080066.

    Article  Google Scholar 

  81. Bleau C, Karelis AD, St-Pierre DH, Lamontagne L. Crosstalk between intestinal microbiota, adipose tissue and skeletal muscle as an early event in systemic low grade inflammation and the development of obesity and diabetes. Diabetes Metab Res Rev. 2015;31(6):545–61.

    Article  CAS  PubMed  Google Scholar 

  82. Liu S, Alexander RK, Lee CH. Lipid metabolites as metabolic messengers in inter-organ communication. Trends Endocrinol Metab. 2014;25(7):356–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Cianci R, Pagliari D, Piccirillo CA, Fritz JH, Gambassi G. The microbiota and immune system crosstalk in health and disease. Mediators Inflamm. 2018;2018:2912539. https://doi.org/10.1155/2018/2912539 (eCollection 2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Everard A, Geurts L, Caesar R, Van Hul M, Matamoros S, Duparc T, et al. Intestinal epithelial MyD88 is a sensor switching host metabolism towards obesity according to nutritional status. Nat Commun. 2014;5:5648. https://doi.org/10.1038/ncomms6648.

    Article  CAS  PubMed  Google Scholar 

  85. Jacobs R, Honore PM. Sepsis-induced multi-organ dysfunction syndrome—a mechanistic approach. J Emerg Crit Care Med. 2017;1:27. https://doi.org/10.21037/jeccm.2017.09.04.

    Article  Google Scholar 

  86. Cani PD, Amar J, Iglesias MA, Poggi M, Knauf C, Bastelica D, et al. Metabolic endotoxemia initiates obesity and insulin resistance. Diabetes. 2007;56(7):1761–72.

    Article  CAS  PubMed  Google Scholar 

  87. Koeth RA, Wang Z, Levison BS, et al. Intestinal microbiota metabolism of L-carnitine, a nutrient in red meat, promotes atherosclerosis. Nat Med. 2013;19(5):576–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Ramezani A, Massy ZA, Meijers B, Evenepoel P, Vanholder R, Raj DS. Role of the gut microbiome in uremia: a potential therapeutic target. Am J Kidney Dis. 2016;67(3):483–98.

    Article  CAS  PubMed  Google Scholar 

  89. Budden KF, Gellatly SL, Wood DL, Cooper MA, Morrison M, Hugenholtz P, et al. Emerging pathogenic links between microbiota and the gut–lung axis. Nat Rev Microbiol. 2017;15(1):55–63.

    Article  CAS  PubMed  Google Scholar 

  90. Hamrick MW. Role of the cytokine-like hormone leptin in muscle-bone crosstalk with aging. J Bone Metab. 2017;24(1):1–8.

    Article  PubMed  PubMed Central  Google Scholar 

  91. Lelubre C, Vincent JL. Mechanisms and treatment of organ failure in sepsis. Nat Rev Nephrol. 2018;14(7):417–27.

    Article  PubMed  Google Scholar 

  92. Hatakeyama N, Matsuda N. Alert cell strategy: mechanisms of inflammatory response and organ protection. Curr Pharm Des. 2014;20(36):5766–78.

    Article  CAS  PubMed  Google Scholar 

  93. Cavaillon JM, Annane D. Compartmentalization of the inflammatory response in sepsis and SIRS. J Endotoxin Res. 2006;12(3):151–70.

    CAS  PubMed  Google Scholar 

  94. John S, Willam C. Lung and kidney failure. Pathogenesis, interactions, and therapy. Med Klin Intensivmed Notfmed. 2015;110(6):452–8. https://doi.org/10.1007/s00063-014-0404-x.

    Article  CAS  PubMed  Google Scholar 

  95. Ologunde R, Zhao H, Lu K, Ma D. Organ cross talk and remote organ damage following acute kidney injury. Int Urol Nephrol. 2014;46(12):2337–45.

    Article  PubMed  Google Scholar 

  96. Ziesmann MT, Marshall JC. Multiple organ dysfunction: the defining syndrome of sepsis. Surg Infect. 2018;19(2):184–90.

    Article  Google Scholar 

  97. Kellum JA, Prowle JR. Paradigms of acute kidney injury in the intensive care setting. Nat Rev Nephrol. 2018;14(4):217–30.

    Article  PubMed  Google Scholar 

  98. Hotchkiss RS, Moldawer LL, Opal SM, Reinhart K, Turnbull IR, Vincent JL. Sepsis and septic shock. Nat Rev Dis Primers. 2016;2:16045. https://doi.org/10.1038/nrdp.2016.45.

    Article  PubMed  PubMed Central  Google Scholar 

  99. Fay KT, Ford ML, Coopersmith CM. The intestinal microenvironment in sepsis. Biochim Biophys Acta Mol Basis Dis. 2017;1863(10):2574–83. https://doi.org/10.1016/j.bbadis.2017.03.005.

    Article  CAS  PubMed  Google Scholar 

  100. Travers JG, Kamal FA, Robbins J, Yutzey KE, Blaxall BC. Cardiac fibrosis: the fibroblast awakens. Circ Res. 2016;118(6):1021–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Lopez-Otin C, Blasco MA, Partridge L, Serrano M, Kroemer G. The hallmarks of aging. Cell. 2013;153(6):1194–217.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Chen D, Xie R, Shu B, Landay AL, Wei C, Reiser J, et al. Wnt signaling in bone, kidney, intestine, and adipose tissue and interorgan interaction in aging. Ann N Y Acad Sci. 2018;1442(1):48–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Biragyn A, Ferrucci L. Gut dysbiosis: a potential link between increased cancer risk in ageing and inflammaging. Lancet Oncol. 2018;19(6):e295–304.

    Article  PubMed  PubMed Central  Google Scholar 

  104. Prasad S, Sung B, Aggarwal BB. Age-associated chronic diseases require age-old medicine: role of chronic inflammation. Prev Med. 2012;54(Suppl):S29–37.

    Article  CAS  PubMed  Google Scholar 

  105. Toba H, Lindsey ML. Extracellular matrix roles in cardiorenal fibrosis: potential therapeutic targets for CVD and CKD in the elderly. Pharmacol Ther. 2019;193:99–120.

    Article  CAS  PubMed  Google Scholar 

  106. Panickar KS, Jewell DE. The benefit of anti-inflammatory and renal-protective dietary ingredients on the biological processes of aging in the kidney. Biology. 2018;7(4):E45. https://doi.org/10.3390/biology7040045.

    Article  PubMed  Google Scholar 

  107. Madero M, Katz R, Murphy R, Newman A, Patel K, Ix J, et al. Comparison between different measures of body fat with kidney function decline and incident CKD. Clin J Am Soc Nephrol. 2017;12(6):893–903.

    Article  PubMed  PubMed Central  Google Scholar 

  108. Baskin KK, Winders BR, Olson EN. Muscle as a ‘‘mediator’’ of systemic metabolism. Cell Metab. 2015;21(2):237–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Ronco C, Cicoira M, McCullough PA. Cardiorenal syndrome type 1: pathophysiological crosstalk leading to combined heart and kidney dysfunction in the setting of acutely decompensated heart failure. J Am Coll Cardiol. 2012;60(12):1031–42.

    Article  PubMed  Google Scholar 

  110. Fassett RG, Venuthurupalli SK, Gobe GC, Coombes JS, Cooper MA, Hoy WE. Biomarkers in chronic kidney disease: a review. Kidney Int. 2011;80(8):806–21.

    Article  CAS  PubMed  Google Scholar 

  111. Schnyder S, Handschin C. Skeletal muscle as an endocrine organ: pGC-1α, myokines and exercise. Bone. 2015;80:115–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Peng H, Wang Q, Lou T, Qin J, Jung S, Shetty V, et al. Myokine mediated muscle-kidney crosstalk suppresses metabolic reprogramming and fibrosis in damaged kidneys. Nat Commun. 2017;8(1):1493.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

There are no sources of funding to report.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ferah Armutcu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Responsible Editor: John Di Battista.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Armutcu, F. Organ crosstalk: the potent roles of inflammation and fibrotic changes in the course of organ interactions. Inflamm. Res. 68, 825–839 (2019). https://doi.org/10.1007/s00011-019-01271-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00011-019-01271-7

Keywords

Navigation