Skip to main content
Log in

miR-196a2 (rs11614913) polymorphism is associated with coronary artery disease, but not with in-stent coronary restenosis

  • Original Research Paper
  • Published:
Inflammation Research Aims and scope Submit manuscript

Abstract

Objective

The aim of the study was to evaluate the association of miRNA-146a G/C (rs2910164), and miRNA-196a2 C/T (rs11614913) polymorphisms with the presence of coronary artery disease (CAD) and/or restenosis in patients with coronary stent.

Materials and methods

The polymorphisms were determined in 218 patients with CAD who underwent coronary artery stenting (66 with restenosis and 152 without restenosis) and 611 healthy controls using 5′ exonuclease TaqMan assays.

Results

The distribution of both polymorphisms was similar in patients with and without restenosis. However, when the whole group of patients (with and without restenosis) was compared to healthy controls, under co-dominant, dominant and additive genetic models, the T allele of the miRNA-196a2 C/T (rs11614913) polymorphism was associated with increased risk of CAD (OR = 2.18, Pco–dom = 0.006, OR = 1.86, Pdom = 0.002, and OR = 1.52, Padd = 0.002, respectively). All models were adjusted for age, type 2 diabetes mellitus, dyslipidemia, hypertension and smoking habit. The “GT” haplotype was associated with increased risk of developing CAD (OR = 1.36, P = 0.046).

Conclusions

Our data suggests that the T allele of the miRNA-196a2 C/T (rs11614913) polymorphism is associated with the risk of developing CAD, but no association with restenosis was observed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kuchulakanti PK, Chu WW, Torguson R, Ohlmann P, Rha SW, Clavijo LC, Kim SW, Bui A, Gevorkian N, Xue Z, Smith K, Fournadjieva J, Suddath WO, Satler LF, Pichard AD, Kent KM, Waksman R. Correlates and long-term outcomes of angiographically proven stent thrombosis with sirolimus- and paclitaxel-eluting stents. Circulation. 2006;113:1108–13.

    Article  CAS  PubMed  Google Scholar 

  2. Lee SW, Park SW, Kim YH, Yun SC, Park DW, Lee CW, Kang SJ, Park SJ, Lee JH, Choi SW, Seong IW, Lee NH, Cho YH, Shin WY, Lee SJ, Lee SW, Hyon MS, Bang DW, Choi YJ, Kim HS, Lee BK, Lee K, Park HK, Park CB, Lee SG, Kim MK, Park KH, Park WJ, DECLARE-LONG II Study Investigators et al. A randomized, double-blind, multicenter comparison study of triple antiplatelet therapy with dual antiplatelet therapy to reduce restenosis after drug-eluting stent implantation in long coronary lesions results from the DECLARE-LONG II (drug-eluting stenting followed by cilostazol treatment reduces late restenosis in patients with long coronary lesions) trial. J Am Coll Cardiol. 2011;57:1264–70.

    Article  CAS  PubMed  Google Scholar 

  3. Hamasaki S, Tei C. Effect of coronary endothelial function on outcomes in patients undergoing percutaneous coronary intervention. J Cardiol. 2011;57:231–8.

    Article  PubMed  Google Scholar 

  4. Latib A, Mussardo M, Ielasi A, Tarsia G, Godino C, Al-Lamee R, Chieffo A, Airoldi F, Carlino M, Montorfano M, Colombo A. Long-term outcomes after the percutaneous treatment of drug-eluting stent restenosis. JACC Cardiovasc Interv. 2011;4:155–64.

    Article  PubMed  Google Scholar 

  5. Costa MA, Simon DI. Molecular basis of restenosis and drug-eluting stents. Circulation. 2005;111:2257–73.

    Article  PubMed  Google Scholar 

  6. Lee RC, Feinbaum RL, Ambros V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell. 1993;75:843–54.

    Article  CAS  PubMed  Google Scholar 

  7. Ren J, Zhang J, Xu N, Han G, Geng Q, Song J, Li S, Zhao J, Chen H. Signature of circulating MicroRNAs as potential biomarkers in vulnerable coronary artery disease. PLoS One. 2013;8:e80738.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Qin S, Zhang C. microRNAs in vascular disease. J Cardiovasc Pharmacol. 2011;57:8–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Fichtlscherer S, De Rosa S, Fox H, Schwietz T, Fischer A, Liebetrau C, Weber M, Hamm CW, Röxe T, Müller-Ardogan M, Bonauer A, Zeiher AM, Dimmeler S. Circulating microRNAs in patients with coronary artery disease. Circ Res. 2010;107:677–84.

    Article  CAS  PubMed  Google Scholar 

  10. Small EM, Frost RJ, Olson EN. MicroRNAs add a new dimension to cardiovascular disease. Circulation. 2010;121:1022–32.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Corsten MF, Dennert R, Jochems S, Kuznetsova T, Devaux Y, Hofstra L, Wagner DR, Staessen JA, Heymans S, Schroen B. Circulating MicroRNA-208b and MicroRNA-499 reflect myocardial damage in cardiovascular disease. Circ Cardiovasc Genet. 2010;3:499–506.

    Article  PubMed  Google Scholar 

  12. Gomes da Silva AM, Silbiger VN. miRNAs as biomarkers of atrial fibrillation. Biomarkers. 2014;19:631–6.

    Article  CAS  PubMed  Google Scholar 

  13. Gareri C, De Rosa S, Indolfi C. MicroRNAs for restenosis and thrombosis after vascular injury. Circ Res. 2016;118:1170–84.

    Article  CAS  PubMed  Google Scholar 

  14. Santulli G. MicroRNAs distinctively regulate vascular smooth muscle and endothelial cells: functional implications in angiogenesis, atherosclerosis, and in-stent restenosis. Adv Exp Med Biol. 2015;887:53–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Wang D, Deuse T, Stubbendorff M, Chernogubova E, Erben RG, Eken SM, Jin H, Li Y, Busch A, Heeger CH, Behnisch B, Reichenspurner H, Robbins RC, Spin JM, Tsao PS, Schrepfer S, Maegdefessel L. Local MicroRNA modulation using a novel anti-miR-21-eluting stent effectively prevents experimental in-stent restenosis. Arterioscler Thromb Vasc Biol. 2015;35:1945–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell. 2004;116:281–97.

    Article  CAS  PubMed  Google Scholar 

  17. He M, Gong Y, Shi J, Pan Z, Zou H, Sun D, Tu X, Tan X, Li J, Li W, Liu B, Xue J, Sheng L, Xiu C, Yang N, Xue H, Ding X, Yu C, Li Y. Plasma microRNAs as potential noninvasive biomarkers for in-stent restenosis. PLoS One. 2014;9:e112043.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Liu H, Chen M, Wu F, Li F, Yin T, Cheng H, Li W, Liu B, Wang Q, Tao L. rs2910164 polymorphism confers a decreased risk for pulmonary hypertension by compromising the processing of microRNA-146a. Cell Physiol Biochem. 2015;36:1952–60.

    Google Scholar 

  19. Gu JY, Tu L. Investigating the role of polymorphisms in miR-146a, -149, and -196a2 in the development of gastric cancer. Genet Mol Res. 2016;15:027839.

    Google Scholar 

  20. Huang S, Lv Z, Deng Q, Li L, Yang B, Feng J, Wu T, Zhang X, Cheng J. A genetic variant in pre-miR-146a (rs2910164 C/G) is associated with the decreased risk of acute coronary syndrome in a Chinese population. Tohoku J Exp Med. 2015;237:227–33.

    Article  CAS  PubMed  Google Scholar 

  21. Bao MH, Xiao Y, Zhang QS, Luo HQ, Luo J, Zhao J, Li GY, Zeng J, Li JM. Meta-analysis of miR-146a associated with coronary artery diseases and ischemic stroke. Int J Mol Sci. 2015;16:14305–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Wang N, Li Y, Zhu LJ, Zhou RM, Jin W, Guo XQ, Wang CM, Chen ZF, Liu W. A functional polymorphism rs11614913 in microRNA-196a2 is associated with an increased risk of colorectal cancer although not with tumor stage and grade. Biomed Rep. 2013;1:737–42.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Buraczynska M, Zukowski P, Wacinski P, Ksiazek K, Zaluska W. Polymorphism in microRNA-196a2 contributes to the risk of cardiovascular disease in type 2 diabetes patients. J Diabetes Complicat. 2014;28:617–20.

    Article  PubMed  Google Scholar 

  24. Li T, Niu L, Wu L, Gao X, Li M, Liu W, Yang L, Liu D. A functional polymorphism in microRNA-196a2 is associated with increased susceptibility to non-Hodgkin lymphoma. Tumor Biol. 2015;36:3279–84.

    Article  CAS  Google Scholar 

  25. Ren YG, Zhuo XM, Cui ZG, Hou G. Effects of common polymorphisms in miR-146a and miR-196a2 on lung cancer susceptibility: a meta-analysis. J Thorac Dis. 2016;8:1297–305.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Xiong XD, Cho M, Cai XP, Cheng J, Jing X, Cen JM, Liu X, Yang XL, Suh Y. A common variant in pre-miR-146 is associated with coronary artery disease risk and its mature miRNA expression. Mutat Res. 2014;761:15–20.

    Article  CAS  PubMed  Google Scholar 

  27. Zhou K, Yue P, Ma F, Yan H, Zhang Y, Wang C, Qiu D, Hua Y, Li Y. Interpreting the various associations of MiRNA polymorphisms with susceptibilities of cardiovascular diseases: current evidence based on a systematic review and meta-analysis. Medicine (Baltimore). 2018;97:e10712.

    Article  Google Scholar 

  28. Wang Y, Wang X, Li Z, Chen L, Zhou L, Li C, Ouyang DS. Two single nucleotide polymorphisms (rs2431697 and rs2910164) of miR-146a are associated with risk of coronary artery disease. Int J Environ Res Public Health. 2017;14:E514.

    Article  CAS  PubMed  Google Scholar 

  29. Bastami M, Ghaderian SM, Omrani MD, Mirfakhraie R, Vakili H, Parsa SA, Nariman-Saleh-Fam Z, Masotti A. MiRNA-related polymorphisms in miR-146a and TCF21 are associated with increased susceptibility to coronary artery disease in an Iranian population. Genet Test Mol Biomark. 2016;20:241–8.

    Article  CAS  Google Scholar 

  30. Zhou HY, Wei Q, Shi XD, Cao HY, Qin L. miR-146a rs2910164 polymorphism might be associated with coronary artery disease risk in Asians. Cell Mol Biol (Noisy-le-grand). 2017;63:27–9.

    Article  Google Scholar 

  31. Sung JH, Kim SH, Yang WI, Kim WJ, Moon JY, Kim IJ, Cha DH, Cho SY, Kim JO, Kim KA, Kim OJ, Lim SW, Kim NK. miRNA polymorphisms (miR146a, miR149, miR196a2 and miR499) are associated with the risk of coronary artery disease. Mol Med Rep. 2016;14:2328–42.

    Article  CAS  PubMed  Google Scholar 

  32. Zhi H, Wang L, Ma G, Ye X, Yu X, Zhu Y, Zhang Y, Zhang J, Wang B. Polymorphisms of miRNAs genes are associated with the risk and prognosis of coronary artery disease. Clin Res Cardiol. 2012;101:289–96.

    Article  CAS  PubMed  Google Scholar 

  33. Lahiri DK, Nurnberger JrJI. A rapid non-enzymatic method for the preparation HMW DNA from blood for RFLP studies. Nucleic Acids Res. 1991;19:5444.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Yuan HY, Chiou JJ, Tseng WH, Liu CH, Liu CK, Lin YJ, Wang HH, Yao A, Chen YT, Hsu CN. FASTSNP: an always up-to-date and extendable service for SNP function analysis and prioritization. Nucleic Acids Res. 2006;34(web server issue):W635–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Xu Z, Taylor JA. SNPinfo: integrating GWAS and candidate gene information into functional SNP selection for genetic association studies. Nucleic Acids Res. 2009;37(Web Server Issue):W600–05.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Zhou B, Rao L, Peng Y, Wang Y, Chen Y, Song Y, Zhang L. Common genetic polymorphisms in pre-microRNAs were associated with increased risk of dilated cardiomyopathy. Clin Chim Acta. 2010;411:1287–90.

    Article  CAS  PubMed  Google Scholar 

  37. Xu J, Hu Z, Xu ZF, Gu H, Yi L, Cao H, Chen J, Tian T, Liang J, Lin Y, Qiu W, Ma H, Shen H, Chen Y. Functional variant in microRNA-196a2 contributes to the susceptibility of congenital heart disease in a Chinese population. Hum Mutat. 2009;30:1231–6.

    Article  CAS  PubMed  Google Scholar 

  38. Sun R, Liu M, Lu L, Zheng Y, Zhang P. Congenital heart disease: causes, diagnosis, symptoms, and treatments. Cell Biochem Biophys. 2015;72:857–60.

    Article  CAS  PubMed  Google Scholar 

  39. Watkins H, Farrall M. Genetic susceptibility to coronary artery disease: from promise to progress. Nat Rev Genet. 2006;7:163–73.

    Article  CAS  PubMed  Google Scholar 

  40. Toraih EA, Ismail NM, Toraih AA, Hussein MH4, Fawzy MS. Precursor miR-499a variant but not miR-196a2 is associated with rheumatoid arthritis susceptibility in an Egyptian population. Mol Diagn Ther. 2016;20:279–95.

    Article  CAS  PubMed  Google Scholar 

  41. Fragoso Lona JM, Sierra Martínez M, Vargas Alarcón G, Barrios Rodas A, Ramírez Bello J. Tumor necrosis factor alfa in cardiovascular diseases: molecular biology and genetics. Gac Med Mex. 2013;149:521–30.

    PubMed  Google Scholar 

  42. Luthra R, Singh RR, Luthra MG, Li YX, Hannah C, Romans AM, Barkoh BA, Chen SS, Ensor J, Maru DM, Broaddus RR, Rashid A, Albarracin CT. MicroRNA-196a2 targets annexin A1: a microRNA mediated mechanism of annexin A1 downregulation in cancers. Oncogene. 2008;27:6667–78.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported in part by grants from the Consejo Nacional de Ciencia y Tecnología (Project number 233277), Mexico City, Mexico. The authors are grateful to the study participants. Institutional Review Board approval was obtained for all sample collections. The authors are grateful to Marva Ilian Arellano Gonzalez for her technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gilberto Vargas-Alarcón.

Ethics declarations

Conflict of interest

The authors report no conflicts of interest. The authors alone are responsible for the content and writing of the paper.

Additional information

Responsible Editor: Andrew Roberts.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fragoso, J.M., Ramírez-Bello, J., Martínez-Ríos, M.A. et al. miR-196a2 (rs11614913) polymorphism is associated with coronary artery disease, but not with in-stent coronary restenosis. Inflamm. Res. 68, 215–221 (2019). https://doi.org/10.1007/s00011-018-1206-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00011-018-1206-z

Keywords

Navigation