Advertisement

Inflammation Research

, Volume 67, Issue 8, pp 671–679 | Cite as

IL-33/s-ST2 ratio, systemic symptoms, and basophil activation in Pru p 3-sensitized allergic patients

  • Carina G. Uasuf
  • Caterina Di Sano
  • Sebastiano Gangemi
  • Giuseppe Albeggiani
  • Diego Cigna
  • Paola Dino
  • Ignazio Brusca
  • Mark Gjomarkaj
  • Elisabetta Pace
Original Research Paper

Abstract

Background

Although IL-33/ST2 axis is involved in the development of allergic diseases, its contribution in food allergy is still unknown.

Methods

In this study, we assessed the serum levels of IL-33 and its s-ST2 receptor in 53 control patients (without allergic diseases), 47 peach (Pru p 3)-sensitized allergic patients (SAP), and in 68 non-Pru p 3-SAP. Basophil activation test (BAT) was used to assess the basophil activation due to allergen exposure before and after the addition of s-ST2 to the blood samples from 5 Pru p 3-SAP.

Results

IL-33 levels in Pru p 3-SAP were higher than in non-Pru p 3-SAP and in normal controls. Lower s-ST2 levels were found in Pru p 3-SAP than in non-Pru p 3-SAP. IL-33/s-ST2 ratio was higher in Pru p 3-SAP than in both non-Pru p 3-SAP and controls. Higher IL-33/s-ST2 ratio was observed in Pru p 3-SAP with severe than in those with mild systemic symptoms. BAT analysis in Pru p 3-SAP showed a decrease in basophil activation due to Pru p 3 exposure after the addition of s-ST2 to the blood samples.

Conclusions

An imbalance in the baseline levels of IL-33/ST2 pathway is present in Pru p 3-SAP. The measurement of this pathway might be helpful to detect patients at a higher risk of developing severe systemic symptoms.

Keywords

IL-33 receptor sST2 Food allergy Non-specific lipid-transfer protein Peach allergy sIgE to Pru p 3 Anaphylaxis Basophil activation test Panallergens 

Abbreviations

IL-33

Interleukin 33

s-ST2

Soluble IL-33 receptor

Pru p 3-SAP

Peach lipid-transfer protein (LTP)-sensitized allergic patients

Non-Pru p 3-SAP

Non-Pru p 3-sensitized allergic patients

sIgE

Specific immunoglobuline E

BAT

Basophil activation test

SPT

Skin prick test

OAS

Oral allergic syndrome

ELISA

Enzyme-linked immunosorbent assay

nsLTP

Non-specific lipid-transfer protein

IL-1RL

IL-1 receptor or like 1 gene

Notes

Acknowledgements

This work was supported by the Italian National Research Council. The authors thank Dr Massimiliano Di Vita for his unconditional support.

Funding

Not applicable.

Conflict of interest

No conflicts of interest or disclosures to be made by any of the authors.

Consent for publication

Not applicable.

Availability of data and material

Not applicable.

References

  1. 1.
    Sims JE, Smith DE. The IL-1 family: regulators of immunity. Nat Rev Immunol. 2010;10:89–102.CrossRefPubMedGoogle Scholar
  2. 2.
    Kamekura R, Kojima T, Takano K, Go M, Sawada N, Himi T. The role ofIL-33 and its receptor ST2 in human nasal epithelium with allergic rhinitis. Clin Exp Allergy. 2012;42:218–28.CrossRefGoogle Scholar
  3. 3.
    Lee JH, Wang LC, Yu HH, Lin YT, Yang YH, Chiang BL. Type I IL-1 receptor (IL-1RI) as potential new therapeutic target for bronchial asthma. Mediat Inflamm. 2010 (Epub 5 2010).Google Scholar
  4. 4.
    Glück J, Rymarczyk B, Rogala B. Serum IL-33 but not ST2 level is elevated in intermittent allergic rhinitis and is a marker of the disease severity. Inflamm Res. 2012;61(6):547–50.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Ohno T, Morita H, Arae K, Matsumoto K, Nakae S. Interleukin-33 in allergy. Allergy. 2012;67:1203–14.CrossRefPubMedGoogle Scholar
  6. 6.
    Tamagawa-Mineoka R, Okuzawa Y, Masuda K, Katoh N. Increased serum levels of interleukin 33 in patients with atopic dermatitis. J Am Acad Dermatol. 2014;70:882–8.CrossRefPubMedGoogle Scholar
  7. 7.
    Préfontaine D, Nadigel J, Chouiali F, Audusseau S, Semlali A, Chakir J, Martin JG, Hamid Q. Increased IL-33 expression by epithelial cells in bronchial asthma. J Allergy Clin Immunol. 2010;125:752–4.CrossRefPubMedGoogle Scholar
  8. 8.
    Préfontaine D, Lajoie-Kadoch S, Foley S, Audusseau S, Olivenstein R, Halayko AJ, Lemière C, Martin JG, Hamid Q. Increased expression of IL-33 in severe asthma: evidence of expression by airway smooth muscle cells. J Immunol. 2009;183:5094–103.CrossRefPubMedGoogle Scholar
  9. 9.
    Chu DK, Llop-Guevara A, Walker TD, Flader K, Goncharova S, Boudreau JE, Moore CL, Seunghyun In T, Waserman S, Coyle AJ, Kolbeck R, Humbles AA, Jordana M. IL-33, but not thymic stromal lymphopoietin or IL-25, is central to mite and peanut allergic sensitization. J Allergy Clin Immunol. 2013;131(1):187–200.CrossRefPubMedGoogle Scholar
  10. 10.
    Tordesillas L, Goswami R, Benedé S, Grishina G, Dunkin D, Järvinen KM, Maleki SJ, Sampson HA, Berin MC. Skin exposure promotes a Th2-dependent sensitization to peanut allergens. J Clin Invest 2014;124(11):4965–75.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Asero R, Antonicelli L, Arena A, Bommarito L, Caruso B, et al. Causes of food-induced anaphylaxis in Italian adults: a multi-centre study. Int Arch Allergy Immunol. 2009;150:271–7.CrossRefPubMedGoogle Scholar
  12. 12.
    Fernandez-Rivas M, Bolhaar S, Gonzalez-Mancebo E, Asero R, van Leeuwen A, et al. Apple allergy across Europe: how allergen sensitization profiles determine the clinical expression of allergies to plant foods. J Allergy Clin Immunol. 2006;118:481–8.CrossRefPubMedGoogle Scholar
  13. 13.
    Zuidmeer L, van Ree R. Lipid transfer protein allergy: primary food allergy or pollen/food syndrome in some cases. Curr Opin Allergy Clin Immunol. 2007;7:269–27.CrossRefPubMedGoogle Scholar
  14. 14.
    Egger M, Hauser M, Mari A, Ferreira F, Gadermaier G. The role of lipid transfer proteins in allergic diseases. Curr Allergy Asthma Rep. 2010;10:326–35.CrossRefPubMedGoogle Scholar
  15. 15.
    Bindslev-Jensen C, Ballmer-Weber BK, Bengtsson U, Blanco C, Ebner C, Hourihane J, Knulst AC, Moneret-Vautrin DA, Nekam K, Niggemann B, Osterballe M, Ortolani C, Ring J, Schnopp C, Werfel T. Standardization of food challenges in patients with immediate reactions to foods—position paper from the European Academy of Allergology and Clinical Immunology. Allergy. 2004;59:690–7.CrossRefPubMedGoogle Scholar
  16. 16.
    Chan YC, Ramadani F, Santos AF, Pillai P, Ohm-Laursen L, Harper CE, Fang C, Dodev TS, Wu SY, Ying S, Corrigan CJ, Gould HJ. “Auto-anti-IgE”: naturally occurring IgG anti-IgE antibodies may inhibit allergen-induced basophil activation. J Allergy Clin Immunol. 2014;134:1394–401.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Liew FY, Pitman NI, McInnes IB. Disease-associated functions of IL-33: the new kid in the IL-1 family. Nat Rev 2010; 103–10.Google Scholar
  18. 18.
    Pace E, Di Sano C, Sciarrino S, Scafidi V, Ferraro M, Chiappara G, Siena L, Gangemi S, Vitulo P, Giarratano A. Gjomarkaj M Cigarette smoke alters IL-33 expression and release in airway epithelial cells. Biochim Biophys Acta. 2014;1842:1630–7.CrossRefPubMedGoogle Scholar
  19. 19.
    Nabe T. Interleukin (IL)-33: new therapeutic target for atopic diseases. J Pharmacol Sci. 2014;126:85–91.CrossRefPubMedGoogle Scholar
  20. 20.
    Pastorello EA, Farioli L, Pravettoni V, Scibilia J, Mascheri A, Borgonovo L, Piantanida M, Primavesi L, Stafylaraki C, Pasqualetti S, Schroeder J, Nichelatti M, Marocchi A. Pru p 3-sensitised Italian peach-allergic patients are less likely to develop severe symptoms when also presenting IgE antibodies to Pru p 1 and Pru p 4. Int Arch Allergy Immunol. 2011;156(4):362–72.CrossRefPubMedGoogle Scholar
  21. 21.
    Uasuf CG, Villalta D, Conte ME, Di Sano C, Barrale M, Cantisano V, Pace E, Gjomarkaj M, Gangemi S, Brusca I. Different co-sensitizations could determine different risk assessment in peach allergy? Evaluation of an anaphylactic biomarker in Pru p 3 positive patients. Clin Mol Allergy. 2015;13:30.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Pace E, Di Sano C, La Grutta S, Ferraro M, Albeggiani G, Liotta G, Di Vincenzo S, Uasuf CG, Bousquet J, Gjomarkaj M. Multiple in vitro and in vivo regulatory effects of budesonide in CD4 + T lymphocyte subpopulations of allergic asthmatics. PLoS One. 2012;7(12):e48816.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Shen H, O’Byrne PM, Ellis R, Wattie J, Tang C, Inman MD. The effects of intranasal budesonide on allergen-induced production of interleukin-5 and eotaxin, airways, blood, and bone marrow eosinophilia, and eosinophil progenitor expansion in sensitized mice. Am J Respir Crit Care Med. 2002;166(2):146–53.CrossRefPubMedGoogle Scholar
  24. 24.
    Nabe T, Wakamori H, Yano C, Nishiguchi A, Yuasa R, Kido H, Tomiyama Y, Tomoda A, Kida H, Takiguchi A, Matsuda M, Ishihara K, Akiba S, Ohya S, Fukui H, Mizutani N, Yoshino S. Production of interleukin (IL)-33 in the lungs during multiple antigen challenge-induced airway inflammation in mice, and its modulation by a glucocorticoid. Eur J Pharmacol. 2015;757:34–41.CrossRefPubMedGoogle Scholar
  25. 25.
    Joulia R, L’Faqihi FE, Valitutti S, Espinosa E. IL-33 fine tunes mast cell degranulation and chemokine production at the single-cell level. J Allergy Clin Immunol. 2017;140(2):497–509.CrossRefPubMedGoogle Scholar
  26. 26.
    Bandara G, Beaven MA, Olivera A, Gilfillan AM, Metcalfe DD. Activated mast cells synthesize and release soluble ST2-a decoy receptor for IL-33. Eur J Immunol. 2015.  https://doi.org/10.1002/eji.201545501.PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Griesenauer B, Paczesny S. The ST2/IL-33 axis in immune cells during inflammatory diseases. Front Immunol. 2017;8:475.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Storms WW. Minimal persistent inflammation, an emerging concept in the nature and treatment of allergic rhinitis: the possible role of leukotrienes. Ann Allergy Asthma Immunol. 2003;91:131–40.CrossRefPubMedGoogle Scholar
  29. 29.
    Canonica GW, Ciprandi G. Minimal persistent inflammation may be controlled by cetirizine. Ann Allergy Asthma Immunol. 1999;83:445–8.CrossRefPubMedGoogle Scholar
  30. 30.
    Pfeffer PE, Chen YH, Woszczek G, Matthews NC, Chevretton E, Gupta A, Saglani S, Bush A, Corrigan C, Cousins DJ, Hawrylowicz CM. Vitamin D enhances production of soluble ST2, inhibiting the action of IL-33. J Allergy Clin Immunol. 2015;135(3):824–7.CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Koplin JJ, Suaini NH, Vuillermin P, Ellis JA, Panjari M, Ponsonby AL, Peters RL, Matheson MC, Martino D, Dang T, Osborne NJ, Martin P, Lowe A, Gurrin LC, Tang ML, Wake M, Dwyer T, Hopper J, Dharmage SC, Allen KJ. HealthNuts Study. Polymorphisms affecting vitamin D-binding protein modify the relationship between serum vitamin D (25[OH]D3) and food allergy. J Allergy Clin Immunol. 2015. (pii: S0091-6749(15)00911-2).Google Scholar
  32. 32.
    Shao D, Perros F, Caramori G, Meng C, Dormuller P, Chou PC, Church C, Papi A, Casolari P, Welsh D, Peacock A, Humbert M, Adcock IM, Wort SJ. Nuclear IL-33 regulates soluble ST2 receptor and IL-6 expression in primary human arterial endothelial cells and is decreased in idiopathic pulmonary arterial hypertension. Biochem Biophys Res Commun. 2014;451(1):8–14.CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Allergy Diseases Center “Prof G. Bonsignore”Institute of Biomedicine and Molecular Immunology “A. Monroy”(IBIM), National Research Council (CNR)PalermoItaly
  2. 2.Department of Clinical and Experimental Medicine, School and Division of Allergy and Clinical ImmunologyUniversity of MessinaMessinaItaly
  3. 3.Clinical Pathology, Allergy UnitBuccheri La Ferla HospitalPalermoItaly

Personalised recommendations