Skip to main content

Advertisement

Log in

Angiotensin 1–7, but not the thrombin-cleaved osteopontin C-terminal fragment, attenuates osteopontin-mediated macrophage-induced endothelial-cell inflammation

  • Original Research Paper
  • Published:
Inflammation Research Aims and scope Submit manuscript

Abstract

Objective and design

Evaluating the pro-/anti-inflammatory activity of the C-terminal cleavage product of osteopontin in comparison to angiotensin 1–7.

Material and subjects

Human coronary endothelial cells (hcEC) treated with conditioned media from human U937 macrophages.

Treatment

Macrophages were (pre)treated with C-terminal, full-length or N-terminal osteopontin (OPN-C, OPN-FL, OPN-N, respectively), angiotensin II, angiotensin 1–7 or TNF-α. OPN-C modulatory capacity was compared to that of Ang1–7 in inhibiting subsequent Ag II, OPN-FL or OPN-N-induced macrophage-mediated endothelial inflammation.

Methods

Protein expression of NFκB, IκB, vCAM-1 and iCAM-1 was assessed using western blot. Promotor activation by NFκB was also assessed by dual-luciferase reporter assay.

Results

Conditioned media of macrophages treated with OPN-C induced hcECs’ NfκB activation to a lower degree than OPN-FL or OPN-N. Priming of macrophages with angiotensin 1–7 attenuated the endothelial pro-inflammatory effect induced by subsequent exposure of the macrophages to angiotensin II, OPN-FL or OPN-N. This was evidenced by both NfκB activation and vCAM and iCAM expression. In contrast, priming macrophages with OPN-C did not significantly attenuate the subsequent response to the pro-inflammatory cytokines.

Conclusions

OPN-C induces lower macrophage-induced endothelial inflammation compared to OPN-FL or OPN-N, but unlike angiotensin 1–7, fails to prevent endothelial inflammation induced by subsequent pro-inflammatory macrophage stimulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Hansson GK. Inflammation, atherosclerosis, and coronary artery disease. N Engl J Med. 2005;352:1685–95.

    Article  CAS  PubMed  Google Scholar 

  2. Bremner P, Heinrich M. Natural products as targeted modulators of the nuclear factor-kappaB pathway. J Pharm Pharmacol. 2002;54:453–72.

    Article  CAS  PubMed  Google Scholar 

  3. Min JK, Kim YM, Kim SW, Kwon MC, Kong YY, Hwang IK, et al. TNF-related activation-induced cytokine enhances leukocyte adhesiveness: induction of ICAM-1 and VCAM-1 via TNF receptor-associated factor and protein kinase C-dependent NF-kappaB activation in endothelial cells. J Immunol. 2005;175:531–40.

    Article  CAS  PubMed  Google Scholar 

  4. Liu J, Ren Y, Kang L, Zhang L. Oxidized low-density lipoprotein increases the proliferation and migration of human coronary artery smooth muscle cells through the upregulation of osteopontin. Int J Mol Med. 2014;33:1341–7.

    Article  CAS  PubMed  Google Scholar 

  5. Bruemmer D, Collins AR, Noh G, Wang W, Territo M, Arias-Magallona S, et al. Angiotensin II-accelerated atherosclerosis and aneurysm formation is attenuated in osteopontin-deficient mice. J Clin Investig. 2003;112:1318–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Ogawa D, Stone JF, Takata Y, Blaschke F, Chu VH, Towler DA, et al. Liver x receptor agonists inhibit cytokine-induced osteopontin expression in macrophages through interference with activator protein-1 signaling pathways. Circ Res. 2005;96:e59–e67.

    Article  CAS  PubMed  Google Scholar 

  7. Ding Y, Chen J, Cui G, Wei Y, Lu C, Wang L, et al. Pathophysiological role of osteopontin and angiotensin II in atherosclerosis. Biochem Biophys Res Commun. 2016;471:5–9.

    Article  CAS  PubMed  Google Scholar 

  8. Wolak T, Kim H, Ren Y, Kim J, Vaziri ND, Nicholas SB. Osteopontin modulates angiotensin II-induced inflammation, oxidative stress, and fibrosis of the kidney. Kidney Int. 2009;76:32–43.

    Article  CAS  PubMed  Google Scholar 

  9. Golledge J, Cullen B, Rush C, Moran CS, Secomb E, Wood F, et al. Peroxisome proliferator-activated receptor ligands reduce aortic dilatation in a mouse model of aortic aneurysm. Atherosclerosis. 2010;210:51–6.

    Article  CAS  PubMed  Google Scholar 

  10. Yousif MH, Benter IF, Diz DI, Chappell MC. Angiotensin-(1–7)-dependent vasorelaxation of the renal artery exhibits unique angiotensin and bradykinin receptor selectivity. Peptides. 2017;90:10–6.

    Article  CAS  PubMed  Google Scholar 

  11. Sullivan J, Blair L, Alnajar A, Aziz T, Ng CY, Chipitsyna G, et al. Expression of a prometastatic splice variant of osteopontin, OPNC, in human pancreatic ductal adenocarcinoma. Surgery. 2009;146:232–40.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Scatena M, Liaw L, Giachelli CM. Osteopontin: a multifunctional molecule regulating chronic inflammation and vascular disease. Arterioscler Thromb Vasc Biol. 2007;27:2302–9.

    Article  CAS  PubMed  Google Scholar 

  13. Denhardt DT, Noda M, O’Regan AW, Pavlin D, Berman JS. Osteopontin as a means to cope with environmental insults: regulation of inflammation, tissue remodeling, and cell survival. J Clin Investig. 2001;107:1055–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Uchinaka A, Hamada Y, Mori S, Miyagawa S, Saito A, Sawa Y, et al. SVVYGLR motif of the thrombin-cleaved N-terminal osteopontin fragment enhances the synthesis of collagen type III in myocardial fibrosis. Mol Cell Biochem. 2015;408:191–203.

    Article  CAS  PubMed  Google Scholar 

  15. Hamias R, Volvich L, Paran E, Sion-Vardi N, Novack V, Szendro G, et al. Low osteopontin N-terminal fragment and carotid plaque stability associated with statin or antiplatelet therapy. Curr Vasc Pharmacol. 2016;14(3):288–94.

    Article  CAS  PubMed  Google Scholar 

  16. Wolak T, Sion-Vardi N, Novack V, Greenberg G, Szendro G, Tarnovscki T, et al. N-terminal rather than full-length osteopontin or its C-terminal fragment is associated with carotid-plaque inflammation in hypertensive patients. American journal of hypertension. 2013;26:326–33.

    Article  CAS  PubMed  Google Scholar 

  17. Ozaki S, Kurata M, Kumon Y, Matsumoto S, Tagawa M, Watanabe H, et al. Plasma thrombin-cleaved osteopontin as a potential biomarker of acute atherothrombotic ischemic stroke. Hypertens Res. 2017;40(1):61–6.

    Article  CAS  PubMed  Google Scholar 

  18. Lai CF, Seshadri V, Huang K, Shao JS, Cai J, Vattikuti R, et al. An osteopontin-NADPH oxidase signaling cascade promotes pro-matrix metalloproteinase 9 activation in aortic mesenchymal cells. Circ Res. 2006;98:1479–89.

    Article  CAS  PubMed  Google Scholar 

  19. Takahashi K, Takahashi F, Tanabe KK, Takahashi H, Fukuchi Y. The carboxyl-terminal fragment of osteopontin suppresses arginine-glycine-asparatic acid-dependent cell adhesion. Biochem Mol Biol Int. 1998;46:1081–92.

    CAS  PubMed  Google Scholar 

  20. Maeda K, Takahashi K, Takahashi F, Tamura N, Maeda M, Kon S, et al. Distinct roles of osteopontin fragments in the development of the pulmonary involvement in sarcoidosis. Lung. 2001;179:279–91.

    Article  CAS  PubMed  Google Scholar 

  21. Shao Z, Morser J, Leung LL. Thrombin cleavage of osteopontin disrupts a pro-chemotactic sequence for dendritic cells, which is compensated by the release of its pro-chemotactic C-terminal fragment. J Biol Chem. 2014;289:27146–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Plumer A, Duan H, Subramaniam S, Lucas FL, Miesfeldt S, Ng AK, et al. Development of fragment-specific osteopontin antibodies and ELISA for quantification in human metastatic breast cancer. BMC Cancer. 2008;8:38.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Ridruechai C, Sakurada S, Yanai H, Yamada N, Kantipong P, Piyaworawong S, et al. Association between circulating full-length osteopontin and IFN-gamma with disease status of tuberculosis and response to successful treatment. Southeast Asian J Trop Med Public Health. 2011;42:876–89.

    CAS  PubMed  Google Scholar 

  24. Christensen B, Klaning E, Nielsen MS, Andersen MH, Sorensen ES. C-terminal modification of osteopontin inhibits interaction with the alphaVbeta3-integrin. J Biol Chem. 2012;287:3788–97.

    Article  CAS  PubMed  Google Scholar 

  25. Kim HJ, Lee HJ, Jun JI, Oh Y, Choi SG, Kim H, et al. Intracellular cleavage of osteopontin by caspase-8 modulates hypoxia/reoxygenation cell death through p53. Proc Natl Acad Sci USA. 2009;106:15326–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Boggio E, Dianzani C, Gigliotti CL, Soluri MF, Clemente N, Cappellano G, et al. Thrombin cleavage of osteopontin modulates its activities in human cells in vitro and mouse experimental autoimmune encephalomyelitis in vivo. J Immunol Res. 2016;2016:9345495.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Mi Z, Oliver T, Guo H, Gao C, Kuo PC. Thrombin-cleaved COOH(−) terminal osteopontin peptide binds with cyclophilin C to CD147 in murine breast cancer cells. Cancer Res. 2007;67:4088–97.

    Article  CAS  PubMed  Google Scholar 

  28. Kaartinen MT, El-Maadawy S, Rasanen NH, McKee MD. Tissue transglutaminase and its substrates in bone. J Bone Miner Res. 2002;17:2161–73.

    Article  CAS  PubMed  Google Scholar 

  29. Giachelli CM, Liaw L, Murry CE, Schwartz SM, Almeida M. Osteopontin expression in cardiovascular diseases. Ann N Y Acad Sci. 1995;760:109–26.

    Article  CAS  PubMed  Google Scholar 

  30. Sharif SA, Du X, Myles T, Song JJ, Price E, Lee DM, et al. Thrombin-activatable carboxypeptidase B cleavage of osteopontin regulates neutrophil survival and synoviocyte binding in rheumatoid arthritis. Arthritis Rheum. 2009;60:2902–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Agnihotri R, Crawford HC, Haro H, Matrisian LM, Havrda MC, Liaw L. Osteopontin, a novel substrate for matrix metalloproteinase-3 (stromelysin-1) and matrix metalloproteinase-7 (matrilysin). J Biol Chem. 2001;276:28261–7.

    Article  CAS  PubMed  Google Scholar 

  32. Kon S, Nakayama Y, Matsumoto N, Ito K, Kanayama M, Kimura C, et al. A novel cryptic binding motif, LRSKSRSFQVSDEQY, in the C-terminal fragment of MMP-3/7-cleaved osteopontin as a novel ligand for alpha9beta1 integrin is involved in the anti-type II collagen antibody-induced arthritis. PLoS One. 2014;9:e116210.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Christensen B, Zachariae ED, Scavenius C, Thybo M, Callesen MM, Kloverpris S, et al. Identification of transglutaminase reactive residues in human osteopontin and their role in polymerization. PLoS One. 2014;9:e113650.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Das R, Philip S, Mahabeleshwar GH, Bulbule A, Kundu GC. Osteopontin: it’s role in regulation of cell motility and nuclear factor kappa B-mediated urokinase type plasminogen activator expression. IUBMB Life. 2005;57:441–7.

    Article  CAS  PubMed  Google Scholar 

  35. Philip S, Kundu GC. Osteopontin induces nuclear factor kappa B-mediated promatrix metalloproteinase-2 activation through I kappa B alpha /IKK signaling pathways, and curcumin (diferulolylmethane) down-regulates these pathways. J Biol Chem. 2003;278:14487–97.

    Article  CAS  PubMed  Google Scholar 

  36. Matusan-Ilijas K, Damante G, Fabbro D, Dordevic G, Hadzisejdic I, Grahovac M, et al. EGFR expression is linked to osteopontin and Nf-kappaB signaling in clear cell renal cell carcinoma. Clin Transl Oncol. 2013;15:65–71.

    Article  CAS  PubMed  Google Scholar 

  37. Matusan-Ilijas K, Damante G, Fabbro D, Dordevic G, Hadzisejdic I, Grahovac M, et al. Osteopontin expression correlates with nuclear factor-kappaB activation and apoptosis downregulation in clear cell renal cell carcinoma. Pathol Res Pract. 2011;207:104–10.

    Article  CAS  PubMed  Google Scholar 

  38. Raja R, Kale S, Thorat D, Soundararajan G, Lohite K, Mane A, et al. Hypoxia-driven osteopontin contributes to breast tumor growth through modulation of HIF1alpha-mediated VEGF-dependent angiogenesis. Oncogene. 2014;33:2053–64.

    Article  CAS  PubMed  Google Scholar 

  39. Urtasun R, Lopategi A, George J, Leung TM, Lu Y, Wang X, et al. Osteopontin, an oxidant stress sensitive cytokine, up-regulates collagen-I via integrin alpha(V)beta(3) engagement and PI3K/pAkt/NFkappaB signaling. Hepatology. 2012;55:594–608.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Pandey A, Goru SK, Kadakol A, Malek V, Gaikwad AB. Differential regulation of angiotensin converting enzyme 2 and nuclear factor-kappaB by angiotensin II receptor subtypes in type 2 diabetic kidney. Biochimie. 2015;118:71–81.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by grant from the Israel Ministry of Health (Grant no. 8736511; 3-9937 for TW and AR).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Talya Wolak.

Additional information

Responsible Editor: John Di Battista.

Electronic supplementary material

Below is the link to the electronic supplementary material.

11_2017_1120_MOESM1_ESM.tif

Supplementary Figure 1. Ag II, OPN-FL and OPN-N expression in conditioned media. Western blot of AgII, OPN-FL and OPN-N MQ condition media: before PBS wash versus the conditioned media that was applied onto the endothelial cells; after PBS wash and incubated overnight for additional 16 h with fresh medium (TIF 96 KB)

11_2017_1120_MOESM2_ESM.tif

Supplementary Figure 2. NfκB and IκB expression induced by inflammatory stimulation. (A) Macrophages from U937 cells were treated with vehicle, angiotensin II (Ag II), angiotensin 1-7 (Ag 1-7), TNF-α, OPN-FL or vehicle OPN-FL, OPN-N, OPN overnight, then washed and incubated overnight with fresh medium. This medium was transferred onto human coronary endothelial cells for another 16 h. (B) Representative blots of cytoplasmatic NfκB, IκB and nuclear NfκB after stimulation with vehicle, Ag 1-7, Ag II, TNF-α or OPN-FL. Quantification of signals from western blot: column bars (mean±SEM) treated with vehicle, Ag 1-7, Ag II, TNF-α or OPN-FL: for cytoplasmatic NfκB: p<0.001; nuclear NfκB: p=0.0017. One-way Anova with Kruskal–Wallis test. All data are the mean change of n=3 per treatment (TIF 159 KB)

11_2017_1120_MOESM3_ESM.tif

Supplementary Figure 3. The effect of pretreatment with Ag 1-7 and OPN-C on OPN-rFL induced NfκB and IκB endothelial expression. (A) Representative blots of cytoplasmatic NfkB and IkB and nuclear NfkB of control and after pretreatment with vehicle, OPN-C or Ag 1-7 before stimulation with OPN-rFL. (B) Quantification of western blot signals (mean±SEM) bars column treated with control, pretreatment with vehicle, OPN-C, or Ag 1-7 from cytoplasmatic NfκB:p<0.001; IκB: p=0.0014; nuclear NfκB: p<0.001. The effect of pre treatment with Ag 1-7 and OPN-C on OPN-rFL induced vCAM and iCAM endothelial expression. (C) Representative blots of whole cell lysates of vCAM and iCAM of control and after pretreatment with vehicle, OPN-C, or Ag 1-7 before stimulation with OPN-rFL. (D) Quantification of signals from vCAM western blot: column bars (mean±SEM) of control, vehicle, OPN-C, or Ag 1-7: p=0.0014. Quantification of signals iCAM from western blot: column bars (mean±SEM) of control, vehicle, OPN-C or Ag 1-7: p=0.014. One-way Anova with Kruskal–Wallis test. All data are the mean change of n=3 per treatment (TIF 159 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hamias, R., Rudich, A., Greenberg, G. et al. Angiotensin 1–7, but not the thrombin-cleaved osteopontin C-terminal fragment, attenuates osteopontin-mediated macrophage-induced endothelial-cell inflammation. Inflamm. Res. 67, 265–275 (2018). https://doi.org/10.1007/s00011-017-1120-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00011-017-1120-9

Keywords

Navigation