Inflammation Research

, Volume 67, Issue 3, pp 255–264 | Cite as

Polymorphisms and expression of inflammasome genes are associated with the development and severity of rheumatoid arthritis in Brazilian patients

  • Catarina Addobbati
  • Heidi Lacerda Alves da Cruz
  • José Eduardo Adelino
  • Amanda Luíze Melo Tavares Ramos
  • Thiago Sotero Fragoso
  • Alexandre Domingues
  • Ângela Luiza Branco Pinto Duarte
  • Renê Donizeti Ribeiro Oliveira
  • Paulo Louzada-Júnior
  • Eduardo Antônio Donadi
  • Alessandra Pontillo
  • Jaqueline de Azevêdo Silva
  • Sergio Crovella
  • Paula Sandrin-Garcia
Original Research Paper



In the present study, we analyzed the possible association of inflammasome gene variants and expression to rheumatoid arthritis (RA)’s development and severity in the Brazilian population.

Materials and methods

Thirteen single nucleotide polymorphisms within six inflammasome genes (NLRP1, NLRP3, NLRC4, AIM2, CARD8, CASP1) as well as IL1B and IL18 genes in two different Brazilian populations (from Northeast and Southeast Brazil) were analyzed. We also evaluated inflammasome gene expression profile in resting and LPS + ATP-treated monocytes from RA patients and healthy individuals. For genetic association study, 218 patients and 307 healthy controls were genotyped. For gene expression study, inflammasome genes mRNA levels of 12 patients and ten healthy individuals were assessed by qPCR.


Our results showed that rs10754558 NLRP3 and rs2043211 CARD8 polymorphisms are associated with RA development (p value = 0.044, OR = 1.77, statistical power = 0.999) and severity measured by Health Assessment Questionnaire (HAQ) (p value = 0.03), respectively. Gene expression analyses showed that RA patients display activation of CASP1, IL1B and IL1R genes independently of LPS + ATP activation. In LPS + ATP-treated monocytes, NLRP3 and NLRC4 expressions were also significantly higher in patients compared with controls.


The first reported results in Brazilian populations support the role of inflammasome in the development of RA.


SNPs Autoimmunity Prognostic and monocytes 



This work was supported by the following Brazilian funding agencies: CAPES (Coordenação de Aperfeiçoamento de Pessoal de Nível Superior), CNPq (Conselho Nacional de Desenvolvimento Científico e Tecnológico), FAPESP (Fundação Amparo à Pesquisa do Estado de São Paulo) and FACEPE (Fundação de Amparo à Ciência e Tecnologia de Pernambuco).

Author contributions

CAJC conducted experiments, wrote the manuscript and prepared the tables and figures; HLAC, JEA and ALMTR helped conducting the experiments and provided insightful suggestions to the manuscript; PSG, JAS, AP and SC assisted in the study design and coordination, and read, corrected and provided major suggestions to this manuscript; TSF, AD, LFRJ, ALBPD, RDRO, PLJ and EAD recruited patients and participated in data acquisition. All authors addressed important intellectual content and approved the final manuscript for publication.

Compliance with ethical standards

Conflict of interest

The authors have declared no conflicts of interest.

Supplementary material

11_2017_1119_MOESM1_ESM.docx (16 kb)
Supplementary material 1 (DOCX 16 KB)
11_2017_1119_MOESM2_ESM.docx (15 kb)
Supplementary material 2 (DOCX 14 KB)


  1. 1.
    Hitchon CA, El-Gabalawy HS. The synovium in rheumatoid arthritis. Open Rheumatol J. 2011;5:107–14.CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Tobón GJ, Youinou P, Saraux A. The environment, geo-epidemiology, and autoimmune disease: rheumatoid arthritis. Autoimmun Rev. 2010;9(5):A288–A92.CrossRefPubMedGoogle Scholar
  3. 3.
    Alamanos Y, Drosos AA. Epidemiology of adult rheumatoid arthritis. Autoimmun Rev. 2005;4(3):130–6.CrossRefPubMedGoogle Scholar
  4. 4.
    Jacob N, Jacob CO. Genetics of rheumatoid arthritis: an impressionist perspective. Rheum Dis Clin N Am. 2012;38(2):243–57.CrossRefGoogle Scholar
  5. 5.
    Firestein GS. Evolving concepts of rheumatoid arthritis. Nature. 2003;423:356–61.CrossRefPubMedGoogle Scholar
  6. 6.
    Gierut A, Perlman H, Pope RM. Innate immunity and rheumatoid arthritis. Rheum Dis Clin N Am. 2010;36(2):271–96.CrossRefGoogle Scholar
  7. 7.
    Joosten LA, Helsen MM, Saxne T, et al. IL-1 alpha beta blockade prevents cartilage and bone destruction in murine type II collagen-induced arthritis, whereas TNF-alpha blockade only ameliorates joint inflammation. J Immunol. 1999;163:5049–55.PubMedGoogle Scholar
  8. 8.
    Bresnihan B, Alvaro-Gracia JM, Cobby M, et al. Treatment of rheumatoid arthritis with recombinant human interleukin-1 receptor antagonist. Arthritis Rheum. 1998;41:2196–204.CrossRefPubMedGoogle Scholar
  9. 9.
    Alten R, Gram H, Joosten LA, et al. The human anti-IL-1 beta monoclonal antibody ACZ885 is effective in joint inflammation models in mice and in a proof-of-concept study in patients with rheumatoid arthritis. Arthritis Res Ther. 2008;10:R67.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Shaw PJ, McDermott MF, Kanneganti TD. Inflammasomes and autoimmunity. Trends Mol Med. 2011;17(2):57–64.CrossRefPubMedGoogle Scholar
  11. 11.
    Man SM, Kanneganti TD. Regulation of inflammasome activation. Immunol Rev. 2015;265(1):6–21.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Ito S, Hara Y, Kubota T. CARD8 is a negative regulator for NLRP3 inflammasome, but mutant NLRP3 in cryopyrin-associated periodic syndromes escapes the restriction. Arthritis Res Ther. 2014;16(1):R52. 16(.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Neven B, Prieur AM. Quartier dit Maire P. Cryopyrinopathies: update on pathogenesis and treatment. Nat Clin Pract Rheumatol. 2008;4:481–9.CrossRefPubMedGoogle Scholar
  14. 14.
    Pontillo A, Girardelli M, Kamada AJ, et al. Polimorphisms in inflammasome genes are involved in the predisposition to systemic lupus erythematosus. Autoimmunity. 2012;45(4):271–8.CrossRefPubMedGoogle Scholar
  15. 15.
    Carlström M, Ekman AK, Petersson S, et al. Genetic support for the role of the NLRP3 inflammasome in psoriasis susceptibility. Exp Dermatol. 2012;21(12):932–7.CrossRefPubMedGoogle Scholar
  16. 16.
    Roberts RL, Topless RK, Phipps-Green AJ, et al. Evidence of interaction of CARD8 rs2043211 with NALP3 rs35829419 in Crohn’s disease. Genes Immun. 2010;11(4):351–6.CrossRefPubMedGoogle Scholar
  17. 17.
    Schoultz I, Verma D, Halfvarsson J, et al. Combined polymorphisms in genes encoding the inflammasome components NALP3 and CARD8 confer susceptibility to Crohn’s disease in Swedish men. Am J Gastroenterol. 2009;104(5):1180–8.CrossRefPubMedGoogle Scholar
  18. 18.
    Pontillo A, Brandao L, Guimaraes R, et al. Two SNPs in NLRP3 gene are involved in the predisposition to type-1 diabetes and celiac disease in a pediatric population from northeast Brazil. Autoimmunity. 2010;43(8):583–9.CrossRefPubMedGoogle Scholar
  19. 19.
    Pontillo A, Vendramin A, Catamo E, et al. The missense variation Q705K in CIAS1/NALP3/NLRP3 gene and an NLRP1 haplotype are associated with celiac disease. Am J Gastroenterol. 2011;106(3):539 – 44.CrossRefPubMedGoogle Scholar
  20. 20.
    Magitta NF, Bøe Wolff AS, Johansson S, et al. A coding polymorphism in NALP1 confers risk for autoimmune Addison’s disease and type 1 diabetes. Genes Immun. 2009;10:120–4.CrossRefPubMedGoogle Scholar
  21. 21.
    Levandowski CB, Mailloux CM, Ferrara TM, et al. NLRP1 haplotypes associated with vitiligo and autoimmunity increase interleukin-1β processing via the NLRP1 inflammasome. Proc Natl Acad Sci USA. 2013;110(8):2952–6.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Kastbom A, Verma D, Eriksson P, et al. Genetic variation in proteins of the cryopyrin inflammasome influences susceptibility and severity of rheumatoid arthritis (the Swedish TIRA project). Rheumatology (Oxford). 2008;47(4):415–7.CrossRefGoogle Scholar
  23. 23.
    Mathews RJ, Robinson JI, Battellino M, et al. Evidence of NLRP3-inflammasome activation in rheumatoid arthritis (RA); genetic variants within the NLRP3-inflammasome complex in relation to susceptibility to RA and response to anti-TNF treatment. Ann Rheum Dis. 2014;73(6):1202–10.CrossRefPubMedGoogle Scholar
  24. 24.
    Ben Hamad M, Cornelis F, Marzouk S, et al. Association study of CARD8 (p.C10X) and NLRP3 (p.Q705K) variants with rheumatoid arthritis in French and Tunisian populations. Int J Immunogenet. 2012;39(2):131–6.CrossRefPubMedGoogle Scholar
  25. 25.
    Rosengren S, Hoffman HM, Bugbee W, et al. Expression and regulation of cryopyrin and related proteins in rheumatoid arthritis synovium. Ann Rheum Dis. 2005;64(5):708 – 14.CrossRefPubMedGoogle Scholar
  26. 26.
    García-Bermúdez M, López-Mejías R, González-Juanatey C, et al. CARD8 rs2043211 (p.C10X) polymorphism is not associated with disease susceptibility or cardiovascular events in Spanish rheumatoid arthritis patients. DNA Cell Biol. 2013;32(1):28–33.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Kastbom A, Johansson M, Verma D, et al. CARD8 p.C10X polymorphism is associated with inflammatory activity in early rheumatoid arthritis. Ann Rheum Dis. 2010;69(4):723–6.CrossRefPubMedGoogle Scholar
  28. 28.
    Kay J, Upchurch KS. ACR/EULAR 2010 rheumatoid arthritis classification criteria. Rheumatology (Oxford) 2012; 51Suppl 6:vi5–9.Google Scholar
  29. 29.
    Prevoo ML, van’t Hof MA, Kuper HH, et al. Modified disease activity scores that include twenty-eight-joint counts. Development and validation in a prospective longitudinal study of patients with rheumatoid arthritis. Arthritis Rheum. 1995;38:44–8.CrossRefPubMedGoogle Scholar
  30. 30.
    Van Gestel AM, Haagsma CJ, van Riel PL. Validation of rheumatoid arthritis improvement criteria that include simplified joint counts. Arthritis Rheum. 1998;41:1845–50.CrossRefPubMedGoogle Scholar
  31. 31.
    Ramey DR, Fries JF, Singh G. The health assessment questionnaire 1995—Status and review. In: Spilker B, editor. Quality of life and pharmacoleconomics in clinical trials. 2nd ed. Philadelphia: Lippincott-Raven Publishers; 1996.Google Scholar
  32. 32.
    Lahiri DK, Nurnberger JI. A rapid non-enzymatic method for the preparation of HMW DNA from blood for RFLP studies. Nucleic Acids Res. 1991;19:5444.CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Hitomi Y, Ebisawa M, Tomikawa M, et al. Associations of functional NLRP3 polymorphisms with susceptibility to food-induced anaphylaxis and aspirin-induced asthma. J Allergy Clin Immunol. 2009;124(4):779–85e6.CrossRefPubMedGoogle Scholar
  34. 34.
    Cox DG, Canzian F. Genotype transposer: automated genotype manipulation for linkage disequilibrium analysis. Bioinformatics. 2001;17(8):738–9.CrossRefPubMedGoogle Scholar
  35. 35.
    Solé X, Guinó E, Valls J, Iniesta R, Moreno V. SNPStats: a web tool for the analysis of association studies. Bioinformatics. 2006;22(15):1928–9.CrossRefPubMedGoogle Scholar
  36. 36.
    Faul F, Erdfelder E, Buchner A, Lang AG. Statistical power analyses using G*Power 3.1: tests for correlation and regression analyses. Behav Res Methods. 2009;41:1149–60.CrossRefPubMedGoogle Scholar
  37. 37.
    Schmittgen TD, Livak KJ. Analyzing real-time PCR data by the comparative C(T) method. Nat Protoc. 2008;3(6):1101–8.CrossRefPubMedGoogle Scholar
  38. 38.
    Razmara M, Srinivasula SM, Wang L, et al. CARD-8 protein, a new CARD family member that regulates caspase-1 activation and apoptosis. J Biol Chem. 2002;277:13952–8.CrossRefPubMedGoogle Scholar
  39. 39.
    Bouchier-Hayes L, Conroy H, Egan H, et al. CARDINAL, a novel caspase recruitment domain protein, is an inhibitor of multiple NF-κB activation pathways. J Biol Chem. 2001;276:44069–77.CrossRefPubMedGoogle Scholar
  40. 40.
    Stilo R, Leonardi A, Formisano L, et al. TUCAN/CARDINAL and DRAL participate in a common pathway for modulation of NF-κB activation. FEBS Lett. 2002;521:165–9.CrossRefPubMedGoogle Scholar
  41. 41.
    von Kampen O, Lipinski S, Till A, et al. Caspase recruitment domain-containing protein 8 (CARD8) negatively regulates NOD2-mediated signaling. J Biol Chem. 2010;285:19921–6.CrossRefGoogle Scholar
  42. 42.
    Bagnall RD, Roberts RG, Mirza MM, et al. Novel isoforms of the CARD8 (TUCAN) gene evade a nonsense mutation. Eur J Hum Genet. 2008;16:619–25.CrossRefPubMedGoogle Scholar
  43. 43.
    Paramel GV, Sirsjö A, Fransén K. Role of genetic alterations in the NLRP3 and CARD8 genes in health and disease. Mediators Inflamm. 2015:846782.Google Scholar
  44. 44.
    Fontalba A, Martinez-Taboada V, Gutierrez O, et al. Deficiency of the NF-kappaB inhibitor caspase activating and recruitment domain 8 in patients with rheumatoid arthritis is associated with disease severity. J Immunol. 2007;179:4867–73.CrossRefPubMedGoogle Scholar
  45. 45.
    Moelants EA, Mortier A, Van Damme J, et al. Regulation of TNF-α with a focus on rheumatoid arthritis. Immunol Cell Biol. 2013;91(6):393–401.CrossRefPubMedGoogle Scholar
  46. 46.
    Makarov SS. NF-κB in rheumatoid arthritis: a pivotal regulator of inflammation, hyperplasia, and tissue destruction. Arthritis Res. 2001;3:200–6.CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Okamoto H, Cujec TP, Yamanaka H, et al. Molecular aspects of rheumatoid arthritis: role of transcription factors. FEBS J. 2008;275(18):4463–70.CrossRefPubMedGoogle Scholar
  48. 48.
    Blomgran R, Patcha Brodin V, Verma D, et al. Common genetic variations in the NALP3 inflammasome are associated with delayed apoptosis of human neutrophils. PLoS One. 2012;7(3):e31326.CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Perregaux DG, Gabel CA. Human monocyte stimulus-coupled IL-1beta posttranslational processing: modulation via monovalent cations. Am J Physiol. 1998;275:C1538–C1547.CrossRefPubMedGoogle Scholar
  50. 50.
    Perregaux D, Gabel CA. Interleukin-1 beta maturation and release in response to ATP and nigericin. Evidence that potassium depletion mediated by these agents is a necessary and common feature of their activity. J Biol Chem. 1994;269:15195–203.PubMedGoogle Scholar
  51. 51.
    Shimada K, Crother TR, Karlin J, et al. Oxidized mitochondrial DNA activates the NLRP3 inflammasome during apoptosis. Immunity. 2012;36(3):401 – 14.CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Pugin J. How tissue injury alarms the immune system and causes a systemic inflammatory response syndrome. Ann Intensive Care. 2012;2(1):27.CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Davis BK, Wen H, Ting JP. The inflammasome NLRs in immunity, inflammation, and associated diseases. Annu Rev Immunol. 2011; 29:707 – 35.Google Scholar
  54. 54.
    Sagulenko V, Thygesen SJ, Sester DP, et al. AIM2 and NLRP3 inflammasomes activate both apoptotic and pyroptotic death pathways via ASC. Cell Death Differ. 2013;20(9):1149–60.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2017

Authors and Affiliations

  • Catarina Addobbati
    • 1
    • 2
  • Heidi Lacerda Alves da Cruz
    • 2
  • José Eduardo Adelino
    • 1
    • 2
  • Amanda Luíze Melo Tavares Ramos
    • 2
  • Thiago Sotero Fragoso
    • 3
  • Alexandre Domingues
    • 4
  • Ângela Luiza Branco Pinto Duarte
    • 4
  • Renê Donizeti Ribeiro Oliveira
    • 5
  • Paulo Louzada-Júnior
    • 5
  • Eduardo Antônio Donadi
    • 5
  • Alessandra Pontillo
    • 6
  • Jaqueline de Azevêdo Silva
    • 1
    • 2
  • Sergio Crovella
    • 1
    • 2
  • Paula Sandrin-Garcia
    • 1
    • 2
  1. 1.Department of GeneticsFederal University of PernambucoRecifeBrazil
  2. 2.Laboratory of Immunopathology Keizo Asami (LIKA)Federal University of PernambucoRecifeBrazil
  3. 3.Rheumatology Service, Clinical HospitalFederal University of AlagoasMaceióBrazil
  4. 4.Rheumatology Division, Clinical HospitalFederal University of PernambucoRecifeBrazil
  5. 5.Clinical Immunology Division, Department of Medicine, Medicine Faculty of Ribeirão PretoUniversity of São PauloRibeirão PretoBrazil
  6. 6.Laboratory of Immunognetics, Department of Immunology, Institute of Biomedical SciencesUniversity of São PauloSão PauloBrazil

Personalised recommendations