Inflammation Research

, Volume 67, Issue 3, pp 233–243 | Cite as

Piperlongumine inhibits the proliferation, migration and invasion of fibroblast-like synoviocytes from patients with rheumatoid arthritis

  • Siqi Xu
  • Youjun Xiao
  • Shan Zeng
  • Yaoyao Zou
  • Qian Qiu
  • Mingcheng Huang
  • Zhongping Zhan
  • Liuqin Liang
  • Xiuyan Yang
  • Hanshi Xu
Original Research Paper



Recent studies have indicated that piperlongumine (PLM) may exert anti-inflammatory effects. In the present study, we determined the effect of PLM on the proliferation, apoptosis, migration and invasion of fibroblast-like synoviocytes (FLS) from patients with rheumatoid arthritis (RA) (referred to herein as RA FLS). We further explored the mechanisms by which the studied compound inhibits the functions of RA FLS.


RA FLS viability and apoptosis were tested using MTT and Annexin V/PI assays, respectively. We performed an EDU assay to examine the proliferation of RA FLS. The migration and invasion of these cells were measured using a transwell chamber method and wound closure assay. The MMP-1, MMP-3, and MMP-13 levels in the culture supernatants of RA FLS were detected using a Luminex Assay kit. The intracellular ROS levels were detected using DCFH-DA. The expression levels of signal transduction proteins were measured using western blot.


We found that PLM induced apoptosis in RA FLS at concentrations of 15 and 20 μM. The proliferation of RA FLS was downregulated by PLM at concentrations of 1, 5 and 10 μM. Migration and invasion of RA FLS were reduced by PLM at concentrations of 1, 5 and 10 μM. PLM also inhibited cytoskeletal reorganization in migrating RA FLS and decreased TNF-α-induced intracellular ROS production. Moreover, we demonstrated the inhibitory effect of PLM on activation of the p38, JNK, NF-κB and STAT3 pathways.


Our findings suggest that PLM can inhibit proliferation, migration and invasion of RA FLS. Moreover, these data suggests that PLM might have therapeutic potential for the treatment of RA.


Piperlongumine Proliferation Migration and invasion Fibroblast-like synoviocytes Rheumatoid arthritis 



The authors would like to thank Jinjin Fan for her technical assistance.


This work is supported by grants from National Natural Science Foundation of China (Grant numbers 81373182, U1401222, 81501389 and 81671591), Guangdong Natural Science Foundation (Grant numbers S2011020002358, S2013010015363, and 2014A030310124) and Guangdong Project of Science and Technology (Grant numbers 2014A020212119, 2016A020215051 and 2016A020215043).

Compliance with ethical standards

Conflict of interest

No conflict of interest has been declared by authors.


  1. 1.
    Smolen JS, Aletaha D, Koeller M, Weisman MH, Emery P. New therapies for treatment of rheumatoid arthritis. Lancet. 2007;370(9602):1861–74.CrossRefPubMedGoogle Scholar
  2. 2.
    Bartok B, Firestein GS. Fibroblast-like synoviocytes: key effector cells in rheumatoid arthritis. Immunol Rev. 2010;233(1):233–55.CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Mor A, Abramson SB, Pillinger MH. The fibroblast-like synovial cell in rheumatoid arthritis: a key player in inflammation and joint destruction. Clin Immunol. 2005;115(2):118–28.CrossRefPubMedGoogle Scholar
  4. 4.
    McInnes IB, Schett G. The pathogenesis of rheumatoid arthritis. N Engl J Med. 2011;365(23):2205–19.CrossRefPubMedGoogle Scholar
  5. 5.
    Hammaker D, Sweeney S, Firestein GS. Signal transduction networks in rheumatoid arthritis. Ann Rheum Dis. 2003;62:86–9.CrossRefGoogle Scholar
  6. 6.
    Bezerra DP, Pessoa C, de Moraes MO, Saker-Neto N, Silveira ER, Costa-Lotufo LV. Overview of the therapeutic potential of piplartine (piperlongumine). Eur J Pharm Sci. 2013;48(3):453–63.CrossRefPubMedGoogle Scholar
  7. 7.
    Adams DJ, Dai M, Pellegrino G, Wagner BK, Stern AM, Shamji AF, et al. Synthesis, cellular evaluation, and mechanism of action of piperlongumine analogs. Proc Natl Acad Sci USA. 2012;109(38):15115–20.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Raj L, Ide T, Gurkar AU, Foley M, Schenone M, Li XY, et al. Selective killing of cancer cells by a small molecule targeting the stress response to ROS. Nature. 2011;475(7355):231–4.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Sun LD, Wang F, Dai F, Wang YH, Lin D, Zhou B. Development and mechanism investigation of a new piperlongumine derivative as a potent anti-inflammatory agent. Biochem Pharmacol. 2015;95(3):156–69.CrossRefPubMedGoogle Scholar
  10. 10.
    Arnett FC, Edworthy SM, Bloch DA, McShane DJ, Fries JF, Cooper NS, et al. The American Rheumatism Association 1987 revised criteria for the classification of rheumatoid arthritis. Arthritis Rheum. 1988;31(3):315–24.CrossRefPubMedGoogle Scholar
  11. 11.
    Xiao Y, Liang L, Huang M, Qiu Q, Zeng S, Shi M, et al. Bromodomain and extra-terminal domain bromodomain inhibition prevents synovial inflammation via blocking IkappaB kinase-dependent NF-kappaB activation in rheumatoid fibroblast-like synoviocytes. Rheumatology (Oxford). 2016;55(1):173–84.CrossRefGoogle Scholar
  12. 12.
    Firestein GS. Invasive fibroblast-like synoviocytes in rheumatoid arthritis. Passive responders or transformed aggressors? Arthritis Rheum. 1996;39(11):1781–90.CrossRefPubMedGoogle Scholar
  13. 13.
    Son DJ, Kim SY, Han SS, Kim CW, Kumar S, Park BS, et al. Piperlongumine inhibits atherosclerotic plaque formation and vascular smooth muscle cell proliferation by suppressing PDGF receptor signaling. Biochem Bioph Res Co. 2012;427(2):349–54.CrossRefGoogle Scholar
  14. 14.
    Chen Y, Liu JM, Xiong XX, Qiu XY, Pan F, Liu D, et al. Piperlongumine selectively kills hepatocellular carcinoma cells and preferentially inhibits their invasion via ROS-ER-MAPKs-CHOP. Oncotarget. 2015;6(8):6406–21.PubMedPubMedCentralGoogle Scholar
  15. 15.
    Tolboom TCA, Pieterman E, van der Laan WH, Toes REM, Huidekoper AL, Nelissen RGHH, et al. Invasive properties of fibroblast-like synoviocytes: correlation with growth characteristics and expression of MMP-1, MMP-3, and MMP-10. Ann Rheum Dis. 2002;61(11):975–80.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Rosengren S, Boyle DL, Firestein GS. Acquisition, culture, and phenotyping of synovial fibroblasts. In: Cope AP, editor. Methods in molecular medicine. Totowa; 2007. pp. 365–75.Google Scholar
  17. 17.
    Xiao YJ, Shi MH, Qiu Q, Huang MC, Zeng S, Zou YY, et al. Piperlongumine suppresses dendritic cell maturation by reducing production of reactive oxygen species and has therapeutic potential for rheumatoid arthritis. J Immunol. 2016;196(12):4925–34.CrossRefPubMedGoogle Scholar
  18. 18.
    Suzuki M, Tetsuka T, Yoshida S, Watanabe N, Kobayashi M, Matsui N, et al. The role of p38 mitogen-activated protein kinase in IL-6 and IL-8 production from the TNF-alpha- or IL-1 beta-stimulated rheumatoid synovial fibroblasts. Febs Lett. 2000;465(1):23–7.CrossRefPubMedGoogle Scholar
  19. 19.
    Zwerina J, Hayer S, Redlich K, Bobacz K, Kollias G, Smolen JS, et al. Activation of p38 MAPK is a key step in tumor necrosis factor-mediated inflammatory bone destruction. Arthritis Rheum. 2006;54(2):463–72.CrossRefPubMedGoogle Scholar
  20. 20.
    Han ZN, Chang LF, Yamanishi Y, Karin M, Firestein GS. Joint damage and inflammation in c-Jun N-terminal kinase 2 knockout mice with passive murine collagen-induced arthritis. Arthritis Rheum. 2002;46(3):818–23.CrossRefPubMedGoogle Scholar
  21. 21.
    Han ZN, Boyle DL, Chang LF, Bennett B, Karin M, Yang L, et al. c-Jun N-terminal kinase is required for metalloproteinase expression and joint destruction in inflammatory arthritis. J Clin Invest. 2001;108(12):73–81.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Pillinger MH, Rosenthal PB, Tolani SN, Apsel B, Dinsell V, Greenberg J, et al. Cyclooxygenase-2-derived E prostaglandins down-regulate matrix metalloproteinase-1 expression in fibroblast-like synoviocytes via inhibition of extracellular signal-regulated kinase activation. J Immunol. 2003;171(11):6080–9.CrossRefPubMedGoogle Scholar
  23. 23.
    Miagkov AV, Kovalenko DV, Brown CE, Didsbury JR, Cogswell JP, Stimpson SA, et al. NF- B activation provides the potential link between inflammation and hyperplasia in the arthritic joint. Proc Natl Acad Sci USA. 1998;95(23):13859–64.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Aggarwal BB. Tumour necrosis factors receptor associated signalling molecules and their role in activation of apoptosis, JNK and NF-kappa B. Ann Rheum Dis. 2000;59:6–16.CrossRefGoogle Scholar
  25. 25.
    McIntyre KW, Shuster DJ, Gillooly KM, Dambach DM, Pattoli MA, Lu P, et al. A highly selective inhibitor of I kappa B kinase, BMS-345541, blocks both joint inflammation and destruction in collagen-induced arthritis in mice. Arthritis Rheum. 2003;48(9):2652–9.CrossRefPubMedGoogle Scholar
  26. 26.
    Krause A, Scaletta N, Ji JD, Ivashkiv LB. Rheumatoid arthritis synoviocyte survival is dependent on Stat3. J Immunol. 2002;169(11):6610–6.CrossRefPubMedGoogle Scholar
  27. 27.
    Son Y, Cheong Y-K, Kim N-H, Chung H-T, Kang DG, Pae H-O. Mitogen-activated protein kinases and reactive oxygen species: How can ROS activate MAPK pathways? J Signal Transduct. 2011;2011:1–6.CrossRefGoogle Scholar
  28. 28.
    Morgan MJ, Liu ZG. Crosstalk of reactive oxygen species and NF-kappaB signaling. Cell Res. 2011;21(1):103–15.CrossRefPubMedGoogle Scholar
  29. 29.
    Liu H, Liu X, Zhang CD, Zhu HF, Xu Q, Bu YQ, et al. Redox imbalance in the development of colorectal cancer. J Cancer. 2017;8(9):1586–97.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2017

Authors and Affiliations

  • Siqi Xu
    • 1
  • Youjun Xiao
    • 1
  • Shan Zeng
    • 1
  • Yaoyao Zou
    • 1
  • Qian Qiu
    • 1
  • Mingcheng Huang
    • 1
  • Zhongping Zhan
    • 1
  • Liuqin Liang
    • 1
  • Xiuyan Yang
    • 1
  • Hanshi Xu
    • 1
  1. 1.Department of Rheumatology, The First Affiliated HospitalSun Yat-sen UniversityGuangzhouChina

Personalised recommendations