Skip to main content

Advertisement

Log in

The gestational power of mast cells in the injured tissue

  • Commentary
  • Published:
Inflammation Research Aims and scope Submit manuscript

Abstract

The inflammatory response expressed after wound healing would be the recapitulation of systemic extra-embryonic functions, which would focus on the interstitium of the injured tissue. In the injured tissue, mast cells, provided for a great functional heterogeneity, could play the leading role in the re-expression of extra-embryonic functions, i.e., coelomic–amniotic and trophoblastic–vitelline. Moreover, mast cells would favor the production of a gastrulation-like process, which in certain tissues and organs would induce the regeneration of the injured tissue. Therefore, the engraftment of mesenchymal stem cells and mast cells, both with an extra-embryonic regenerative phenotype, would achieve a blastema, from the repaired and regenerated injured tissue, rather than by fibrosis, which is commonly made through wound-healing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

References

  1. Norton R, Kobusingye O. Injuries. N Engl J Med. 2013;368:1723–30.

    Article  CAS  PubMed  Google Scholar 

  2. Harper D, Young A, McNaught CE. The physiology of wound healing. Surgery (Oxford) 2014;32:445–50.

    Article  Google Scholar 

  3. Portou MJ, Baker D, Abraham D, Tsui J. The innate immune system, toll-like receptors and dermal wound healing: a review. Vascul Pharmacol. 2015;71:31–6.

    Article  CAS  PubMed  Google Scholar 

  4. Aller MA, Arias JI, Arraez-Aybar LA, Gilsanz C, Arias J. Wound healing reaction: a switch from gestation to senescence. World J Exp Med. 2014;4:16–26.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Childs DR, Murthy AS. Overview of wound healing and management. Surg Clin N Am. 2017;97:189–207.

    Article  PubMed  Google Scholar 

  6. Frykberg RG, Banks J. Challenges in the treatment of chronic wounds. Adv Wound Care. 2015;4(9):560–76.

    Article  Google Scholar 

  7. Sorci G, Faivre B. Inflammation and oxidative stress in vertebrate host–parasite systems. Philos Trans R Soc Lond B Biol Sci. 2009;364:71–83.

    Article  PubMed  Google Scholar 

  8. Strachan DP. Family size, infection and atopy: the first decade of the “hygiene hypothesis”. Thorax. 2000;55(Suppl 1):S2–10.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Nathan C. Points of control in inflammation. Nature 2002;420:848–52.

    Article  Google Scholar 

  10. Libby P. Inflammatory mechanisms: the molecular basis of inflammation and disease. Nutr Rev. 2007;65(12Pt2):S140–6.

    Article  PubMed  Google Scholar 

  11. Okin B, Medzhitov R. Evolution of inflammatory diseases. Curr Biol. 2012;22:R733–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Kotas ME, Medzhitov R. Homeostasis, inflammation and disease susceptibility. Cell 2015;160:816–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Straub RH, Schradin C. Chronic inflammatory systemic diseases. An evolutionary trade-off between acutely beneficial but chronically harmful programs. Evol Med Public Health. 2016;2016:37–51.

    PubMed  PubMed Central  Google Scholar 

  14. Bangi E. Drosophila at the intersection of infection, inflammation and cancer. Front Cell Infect Microbiol. 2013;3:1–6.

    Article  Google Scholar 

  15. Wang L, Kounatidis I, Ligoxygakis P. Drosophila as a model to study the role of blood cells in inflammation, innate immunity and cancer. Front Cell Infect Microbiol. 2014;3:1–17.

    Article  Google Scholar 

  16. Chandramore K, Ghaskadbi S. Evo-devo: hydra raises its Noggin. J Biosci. 2011;36:517–29.

    Article  PubMed  Google Scholar 

  17. Campos-Ramos G. Inflammation as an animal development phenomenon. Clin Dev Immunol. 2012;2012:983203.

    Google Scholar 

  18. Aller MA, Arias N, Fuentes-Julian S, Blazquez-Martinez A, Argudo S, De Miguel MP, Arias JL, Arias J. Coupling inflammation with evo-devo. Med Hypotheses. 2012;78:721–31.

    Article  PubMed  Google Scholar 

  19. Aller MA, Arias JI, Prieto J, Gilsanz C, Arias A, Yang H, Arias J. Surgical inflammatory stress: the embryo takes hold of the reins again. Theor Biol Med Model. 2013;10:6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Moon TC, Befus AD, Kulka M. Mast cell mediators: their differential release and the secretory pathways involved. Front Immunol. 2014;5:1–18.

    Article  Google Scholar 

  21. Krystel-Whittemore M, Dileepan KN, Wood JG. Mast cell: a multi-functional master cell. Front Immunol. 2016;6:1–12.

    Article  Google Scholar 

  22. Arodz T, Bonchev D, Diegelmann RF. A network approach to wound healing. Adv Wound Care. 2013;2:499–509.

    Article  Google Scholar 

  23. Kalkhof S, Förster Y, Schmidt J, Schulz MC, Baumann S, Weibflog A, Gao W, Hempel U, Eckelt U, Rammelt S, Von Bergen M. Proteomics and metabolomics for in situ monitoring of wound healing. Bio Med Res Int. 2014;2014:1–12.

    Article  Google Scholar 

  24. Takemoto CM, Lee Y-N, Jegga AG, Zablocki D, Brandal S, Shahlaee A, Huang S, Ye Y, Gowrisankar S, Huynh J, McDevitt MA. Mast cell transcriptional networks. Blood Cells Mol Dis. 2008;41:82–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Clark RAF. Basics of cutaneous wound repair. J Demartol Surg Oncol. 1993;19:693–706.

    Article  CAS  Google Scholar 

  26. Eming SA, Krieg T, Davidson JM. Inflammation in wound repair: molecular and cellular mechanism. J Invest Dermatol. 2007;127:514–25.

    Article  CAS  PubMed  Google Scholar 

  27. Goldberg SR, Diegelmann RF. Wound healing primer. Surg Clin N Am. 2010;90:1133–46.

    Article  PubMed  Google Scholar 

  28. Reinke JM, Sorg H. Wound repair and regeneration. Eur Surg Res. 2012;49:35–43.

    Article  CAS  PubMed  Google Scholar 

  29. Rose LF, Chan RK. The burn wound microenviroment. Adv Wound Care 2016;5:106–12.

    Article  Google Scholar 

  30. Aller MA, Arias JI, Nava MP, Arias J. Post-traumatic inflammation is a complex response based in the pathological expression of the nervous, immune and endocrine functional systems. Exp Biol Med 2004;229:170–81.

    Article  CAS  Google Scholar 

  31. Rohen JW, Lütjen-Drecoll E. Funktionelle embryologie Schattauer GmbH. Stuttgart Germany 2006;1–162.

  32. Crivellato E, Ribatti D. The mast cell: an evolutionary perspective. Biol Rev 2010;85:347–60.

    Article  PubMed  Google Scholar 

  33. Singh J, Shah R, Singh D. Targeting mast cells: uncovering prolific therapeutic role in myriad diseases. Int Immunopharmacol. 2016;40:362–84.

    Article  CAS  PubMed  Google Scholar 

  34. Wernersson S, Pejler G. Mast cell secretory granules: armed for battle. Nature Rev Immunol. 2014;14:478–94.

    Article  CAS  Google Scholar 

  35. Aller MA, Arias JI, Prieto I, Gilsanz C, Arias JL, Yang H, Arias J. Phases of the acute inflammatory response to the injury. In: Arias J, Aller MA, Arias JI, editors. Surgical inflammation, chap. 4. USA: Bentham Science; 2013. pp. 99–128.

    Chapter  Google Scholar 

  36. Aller MA, Arias JI, Giner M, Losada M, Cruz A, Alonso-Pozas A, Arias J. Oxygen-related inflammatory wound phenotypes. In: Middleton JE, editors. Wound healing: process, phases and promoting, Chap. 2. Huntington: Nova Sciences; 2011. pp. 1–26.

    Google Scholar 

  37. Uberti MG, Pierpont YN, Ko F, Wright TE, Smith CA, Cruse CW, Robson MC, Payne WG. Amnion-derived cellular cytokine solution (ACCS) promotes migration of keratinocytes and fibroblasts. Ann Plast Surg. 2010;64:632–5.

    CAS  PubMed  Google Scholar 

  38. Dovaiher J, Succar J, Lancerotto L, Gurish MF, Orgill DP, Hamilton MJ, Krillis SA, Stevens RL. Development of mast cells and importance of their tryphase and chymasa serine proteases in inflammation and wound healing. Adv Immunol. 2014;122:211–52.

    Article  Google Scholar 

  39. Wong VW, Gurtner CG, Longaker MT. Woung healing: a paradigm for regeneration. Mayo Clin Proc. 2013;88:1022–31.

    Article  PubMed  Google Scholar 

  40. Aller MA, Blanco-Rivero J, Arias JI, Balfagon G, Arias J. The wound-healing response and upregulated embryonic mechanisms: brothers-in-arms forever. Exper Dermatol. 2012;21:497–503.

    Article  Google Scholar 

  41. Ehninger A, Trumpp A. The bone marrow stem cell niche grows up: mesenchymal stem cells and macrophages move. Int J Exp Med. 2011;208:421–8.

    Article  CAS  Google Scholar 

  42. Gabay C, Kushner I. Acute-phase proteins and other systemic responses to inflammation. N Engl J Med. 1999;340:448–54.

    Article  CAS  PubMed  Google Scholar 

  43. Siegel N, Rosner M, Hanneder M, Freilinger A, Hengstschläger M. Human amniotic fluid stem cells: a new perspective. Amino Acids. 2008;35:291–3.

    Article  CAS  PubMed  Google Scholar 

  44. Fraser ST, Baron MH. Embryonic fates for extraembryonic lineages: new perspectives. J Cell Biochem. 2009;107:586–91.

    Article  CAS  PubMed  Google Scholar 

  45. Ueno H, Weisman IL. The origin and fate of yolk sac hematopoiesis: application of chimera analysis to developmental studies. Int J Dev Biol. 2010;54:1019–31.

    Article  CAS  PubMed  Google Scholar 

  46. Antonucci I, Provenzano M, Rodrigues M, Pantalone A, Salini V, Ballerini P, Borlongan CV, Stuppia L. Amniotic fluid stem cells: a novel source for modeling of human genetic diseases. Int J Mol Sci. 2016;17:E607.

    Article  PubMed  Google Scholar 

  47. Frenzel L, Hermine O. Mast cells and inflammation. Joint Bone Spine. 2013;80:141–5.

    Article  CAS  PubMed  Google Scholar 

  48. Nurden AT. Platelets, inflammation and tissue regeneration. Tromb Haemost. 2011;105(Suppl 1):S13–33.

    Article  CAS  Google Scholar 

  49. Yoshida S, Wada Y. Transfer of maternal cholesterol to embryo and fetus in pregnant mice. J Lipid Res. 2005;46:2168–74.

    Article  CAS  PubMed  Google Scholar 

  50. Miller WL, Bose HS. Early steps in steroidogenesis: Intracellular cholesterol trafficking. J Lipid Res. 2011;5:2111–35.

    Article  Google Scholar 

  51. Gilliver SC. Sex steroids as inflammatory regulators. J Steroid Biochem Mol Biol. 2010;120:105–15.

    Article  CAS  PubMed  Google Scholar 

  52. Dichlberger A, Kovanen PT, Schneider WJ. Mast cells: from lipid droplets to lipid mediators. Clin Sci. 2013;125:121–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Melo RCN, D’Avila H, Wan H-C, Bozza PT, Dvorak AM, Weller PF. Lipid bodies in inflammatory cells: structure, function and current imaging techniques. J Histochem Cytochem. 2011;59:540–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Ghesquiere B, Wong BW, Kuchnio A, Carmeliet P. Metabolism of stromal and immune cells in health and disease. Nature 2014;511:167–76.

    Article  CAS  PubMed  Google Scholar 

  55. Aller MA, Arias JI, Arias J. Pathological axes of wound repair. Gastrulation revisited. Theor Biol Med Model. 2010;7:37.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Boroviak T, Nichols J. Primate embryogenesis predicts the hallmarks of human naïve pluripotency. Development 2017;144:175–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Csaba G. Mast cell, the peculiar member of the immune system: a homeostatic aspect. Acta Microbiol Immunol Hung. 2015;63:207–31.

    Article  Google Scholar 

  58. Yokoyama H. Initiation of limb regeneration: the critical step for regenerative capacity. Dev Growth Differ. 2008;50:13–22.

    Article  CAS  PubMed  Google Scholar 

  59. Khodadi E, Shahrabi S, Shahjahani M, Azandeh S, Saki N. Role of stem cell factor in the placental niche. Cell Tissue Res. 2016;366:523–31.

    Article  CAS  PubMed  Google Scholar 

  60. Balaji S, Watson CL, Ranjan R, King A, Bollyky PL, Keswani SG. Chemokine involvement in fetal and adult wound healing. Adv Wound Care. 2015;4:660–71.

    Article  Google Scholar 

  61. Latchana N, Peck JR, Whitson B, Black SM. Preservation solutions for cardiac and pulmonary donor grafts: a review of the current literature. J Thorac Dis. 2014;6:1143–9.

    PubMed  PubMed Central  Google Scholar 

  62. Latchana N, Peck JR, Whitson BA, Henry ML, Elkhammas EA, Black SM. Preservation solutions used during abdominal transplantation: current status and outcomes. World J Transpl. 2015;5:154–64.

    Article  Google Scholar 

  63. Nazari M, Ni NC, Lüdke A, Li SH, Guo J, Weisel RD, Li RK. Mast cell promote proliferation and migration and inhibit differentiation of mesenchymal stem cells through PDGF. J Mol Cell Cardiol. 2016;94:32–42.

    Article  CAS  PubMed  Google Scholar 

  64. Wulff BC, Parent AE, Meleski MA, DiPietro LA, Schrementi ME, Wilgus TA. Mast cells contribute to scar formation during fetal wound healing. J Invest Dermatol. 2012;132:458–65.

    Article  CAS  PubMed  Google Scholar 

  65. Wilgus TA, Wulff BC. The importance of mast cells in dermal scarring. Adv Wound Care. 2014;3:356–65.

    Article  Google Scholar 

  66. Douaiher J, Succar J, Lancerotto L, Gurish MF, Orgill DP, Hamilton MJ, Krilis SA, Stevens RL. Development of mast cells and importance of their tryptase and chymase serine proteases in inflammation and wound healing. Adv Immunol. 2014;122:211–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Sriram G, Bigliardi PL, Bigliardi-Qi M. Fibroblast heterogeneity and its implications for engineering organotypic skin models in vitro. Eur J Cell Biology. 2015;94:483–512.

    Article  CAS  Google Scholar 

  68. Flor J. Salamander regeneration as a model for developing novel regenerative and anticancer therapies. J Cancer. 2014;5:715–9.

    Article  Google Scholar 

  69. Redd MJ, Cooper L, Wood W, Stramer B, Martin P. Wound healing and inflammation: embryos reveal the way to perfect repair. Phil Trans R Soc Lond B. 2004;339:777–84.

    Article  Google Scholar 

  70. Motegi S-I, Ishikawa O. Mesenchymal stem cells: The roles and functions in cutaneous wound healing and tumor growth. J Dermatol Sci. 2016;1811:30721–6.

    Google Scholar 

  71. Otero-Viñas M, Falanga V. Mesenchymal stem cells in chronic wounds: the spectrum from basic to advanced therapy. Adv Wound Care. 2016;5:149–63.

    Article  Google Scholar 

  72. Theoharides TC, Kempuraj D, Tagen M, Vasiadi M, Centrulo CL. Human umbilical cord blood-derived mast cells. A unique model for the study of neuro-immuno-endocrine interactions. Stem Cell Rev. 2006;6:143–54.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria-Angeles Aller.

Additional information

Responsible Editor: John Di Battista.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aller, MA., Arias, N., Martínez, V. et al. The gestational power of mast cells in the injured tissue. Inflamm. Res. 67, 111–116 (2018). https://doi.org/10.1007/s00011-017-1108-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00011-017-1108-5

Keywords

Navigation