Inflammation Research

, Volume 67, Issue 2, pp 129–138 | Cite as

A haplotypic variant at the IRGM locus and rs11747270 are related to the susceptibility for chronic periodontitis

Original Research Paper

Abstract

Objective and design

Immunity-regulated GTPase M (IRGM) plays a critical role in the defense against intracellular bacteria by regulating autophagy formation. This direct genetic association study aimed to determine whether variants at the IRGM genetic locus are associated with chronic periodontitis.

Materials and subjects

Using PCR and melting curve analysis 390 periodontitis patients and 770 healthy controls have been genotyped regarding six polymorphisms in the IRGM gene (rs13361189, rs10065172, rs4958847, rs1000113, rs11747270, rs931058).

Results

Frequency distribution of alleles and genotypes for the six polymorphisms were not significantly different between the periodontitis and the control group. Also following stratification according to gender and smoking no significant linkage was found for any of the IRGM variants with periodontitis. Analysis of a subsample of patients revealed a significant association for rs11747270 with severe periodontitis (p = 0.003). Pairwise linkage analysis revealed one block composed of rs13361189, rs10065172, rs4958847, rs1000113 and 11747270 with strong or even complete linkage disequilibrium (r 2 > 0.9). Four haplotypes showed a frequency of > 1%, among which the haplotype C-T-A-T-G was significantly associated with chronic periodontitis (p = 0.0051; OR 4.66, 95% CI 1.41–15.42).

Conclusions

One rare haplotype of the IRGM locus is significantly associated with chronic periodontitis in a German cohort.

Keywords

Autophagy Intracellular Gingival Epithelial Bacteria Immunity 

Notes

Acknowledgements

This article contains parts of the doctoral thesis of E. Tsekeri.

Compliance with ethical standards

Conflict of interest

The authors declare that there is no conflict of interest.

References

  1. 1.
    Tribble GD, Lamont RJ. Bacterial invasion of epithelial cells and spreading in periodontal tissue. Periodontology. 2010;52:68–83.CrossRefGoogle Scholar
  2. 2.
    Rudney JD, Chen R, Sedgewick GJ. Actinobacillus actinomycetemcomitans, Porphyromonas gingivalis, and Tannerella forsythensis are components of a polymicrobial intracellular flora within human buccal cells. J Dent Res. 2005;84:59–63.CrossRefPubMedGoogle Scholar
  3. 3.
    Ho MH, Guo ZM, Chunga J, Goodwin JS, Xie H. Characterization of innate immune responses of human endothelial cells induced by porphyromonas gingivalis and their derived outer membrane vesicles. Front Cell Infect Microbiol. 2016;6:139 (eCollection).CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Asakawa R, Komatsuzawa H, Kawai T, Yamada S, Goncalves RB, Izumi S, Fujiwara T, Nakano Y, Suzuki N, Uchida Y, Ouhara K, Shiba H, Taubman MA, Kurihara H, Sugai M. Outer membrane protein 100, a versatile virulence factor of Actinobacillus actinomycetemcomitans. Mol Microbiol. 2003;50:1125–39.CrossRefPubMedGoogle Scholar
  5. 5.
    Amano A. Host–parasite interactions in periodontitis: subgingival infection and host sensing. Periodontology 2000. 2010;52:7–11.CrossRefPubMedGoogle Scholar
  6. 6.
    Lu C, Chen J, Xu HG, Zhou X, He Q, Li YL, Jiang G, Shan Y, Xue B, Zhao RX, Wang Y, Werle KD, Cui R, Liang J, Xu ZX. MIR106B and MIR93 prevent removal of bacteria from epithelial cells by disrupting ATG16L1-mediated autophagy. Gastroenterology. 2014;146:188–99.CrossRefPubMedGoogle Scholar
  7. 7.
    Schmid D, Münz C. Innate and adaptive immunity through autophagy. Immunity. 2007;27:11–21.CrossRefPubMedGoogle Scholar
  8. 8.
    Chauhan S, Mandell MA, Deretic V. Mechanism of action of the tuberculosis and Crohn disease risk factor IRGM in autophagy. Autophagy. 2016;12:429–31.CrossRefPubMedGoogle Scholar
  9. 9.
    Singh SB, Davis AS, Taylor GA, Deretic V. Human IRGM induces autophagy to eliminate intracellular mycobacteria. Science. 2006;313:1438–41.CrossRefPubMedGoogle Scholar
  10. 10.
    Bekpen C, Hunn JP, Rohde C, Parvanova I, Guethlein L, Dunn DM, Glowalla E, Leptin M, Howard JC. The interferon-inducible p47 (IRG) GTPases in vertebrates: loss of the cell autonomous resistance mechanism in the human lineage. Genome Biol. 2005;6:R92.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Michalowicz BS, Diehl SR, Gunsolley JC, Sparks BS, Brooks CN, Koertge TE, Califano JV, Burmeister JA, Schenkein HA. Evidence of a substantial genetic basis for risk of adult periodontitis. J Periodontol. 2000;71:1699–707.CrossRefPubMedGoogle Scholar
  12. 12.
    Laine ML, Crielaard W, Loos BG. Genetic susceptibility to periodontitis. Periodontol 2000. 2012;58:37–68.CrossRefPubMedGoogle Scholar
  13. 13.
    Parkes M, Barrett JC, Prescott NJ, Tremelling M, Anderson CA, Fisher SA, et al. Sequence variants in the autophagy gene IRGM and multiple other replicating loci contribute to Crohn’s disease susceptibility. Nat Genet. 2007;39:830–2.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Song JH, Kim SY, Chung KS, Moon CM, Kim SW, Kim EY, Jung JY, Park MS, Kim YS, Kim SK, Chang J, Shin DJ, Kang YA. Association between genetic variants in the IRGM gene and tuberculosis in a Korean population. Infection. 2014;42:655–60.CrossRefPubMedGoogle Scholar
  15. 15.
    McCarroll SA, Huett A, Kuballa P, Chilewski SD, Landry A, Goyette P, Zody MC, Hall JL, Brant SR, Cho JH, Duerr RH, Silverberg MS, Taylor KD, Rioux JD, Altshuler D, Daly MJ, Xavier RJ. Deletion polymorphism upstream of IRGM associated with altered IRGM expression and Crohn’s disease. Nat Genet. 2008;40:1107–12.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Palomino-Morales RJ, Oliver J, Gómez-García M, López-Nevot MA, Rodrigo L, Nieto A, Alizadeh BZ, Martín J. Association of ATG16L1 and IRGM genes polymorphisms with inflammatory bowel disease: a meta-analysis approach. Genes Immun. 2009;10:356–64.CrossRefPubMedGoogle Scholar
  17. 17.
    Papageorgiou SN, Hagner M, Nogueira AV, Franke A, Jäger A, Deschner J. Inflammatory bowel disease and oral health: systematic review and a meta-analysis. J Clin Periodontol. 2017;44:382–93.CrossRefPubMedGoogle Scholar
  18. 18.
    Vaithilingam RD, Safii SH, Baharuddin NA, Ng CC, Cheong SC, Bartold PM, Schaefer AS, Loos BG. Moving into a new era of periodontal genetic studies: relevance of large case-control samples using severe phenotypes for genome-wide association studies. J Periodontal Res. 2014;49:683–95.CrossRefPubMedGoogle Scholar
  19. 19.
    Hamp SE, Nyman S, Lindhe J. Periodontal treatment of multirooted teeth. Results after 5 years. J Clin Periodontol. 1975;2:126–35.CrossRefPubMedGoogle Scholar
  20. 20.
    AAP. Consensus report: chronic periodontitis. Ann Periodontol. 1999;4:38.CrossRefGoogle Scholar
  21. 21.
    Little J, Higgins JP, Ioannidis JP, Moher D, Gagnon F, von Elm E, et al. STrengthening the REporting of Genetic Association Studies (STREGA): an extension of the STROBE statement. PLoS Med. 2009;6:e22.CrossRefPubMedGoogle Scholar
  22. 22.
    Miller SA, Dykes DD, Polesky HF. A simple salting out procedure for extracting DNA from human nucleated cells. Nucl Acids Res. 1998;16:1215.CrossRefGoogle Scholar
  23. 23.
    Purcell S, Cherny SS, Sham PC. Genetic Power Calculator: design of linkage and association genetic mapping studies of complex traits. Bioinformatics. 2003;19:149–50.CrossRefPubMedGoogle Scholar
  24. 24.
    Robertson A, Hill WG. Deviations from Hardy-Weinberg proportions: sampling variances and use in estimation of inbreeding coefficients. Genetics. 1984;107:703–18.PubMedPubMedCentralGoogle Scholar
  25. 25.
    Akaike H. A new look at the statistical model identification. IEEE Trans Autom Control. 1974;19:716–23.CrossRefGoogle Scholar
  26. 26.
    Gabriel SB, Schaffner SF, Nguyen H, Moore JM, Roy J, Blumenstiel B, Higgins J, DeFelice M, Lochner A, Faggart M, Liu-Cordero SN, Rotimi C, Adeyemo A, Cooper R, Ward R, Lander ES, Daly MJ, Altshuler D. The structure of haplotype blocks in the human genome. Science. 2002;296:2225–9.CrossRefPubMedGoogle Scholar
  27. 27.
    Excoffier L, Slatkin M. Maximum-likelihood estimation of molecular haplotype frequencies in a diploid population. Mol Biol Evol. 1995;12:921–7.PubMedGoogle Scholar
  28. 28.
    Bekpen C, Marques-Bonet T, Alkan C, Antonacci F, Leogrande BM, Ventura M, Kidd JM, Siswara P, Howard JC, Eichler EE. Death and resurrection of the human IRGM gene. PLoS Genet. 2009;5:e1000403.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Intemann CD, Thye T, Niemann S, Browne EN, Amanua Chinbuah M, Enimil A, Gyapong J, Osei I, Owusu-Dabo E, Helm S, Rüsch-Gerdes S, Horstmann RD, Meyer CG. Autophagy gene variant IRGM—261 T contributes to protection from tuberculosis caused by Mycobacterium tuberculosis but not by M. africanum strains. PLoS Pathog. 2009;5:e1000577.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Dema B, Fernandez-Arquero M, Maluenda C, Polanco I, Figueredo MA, de la Concha EG, Urcelay E, Núñez C. Lack of association of NKX2-3, IRGM, and ATG16L1 inflammatory bowel disease susceptibility variants with celiac disease. Hum Immunol. 2009;70:946–9.CrossRefPubMedGoogle Scholar
  31. 31.
    Waterman M, Xu W, Stempak JM, Milgrom R, Bernstein CN, Griffiths AM, Greenberg GR, Steinhart AH, Silverberg MS. Distinct and overlapping genetic loci in Crohn’s disease and ulcerative colitis: correlations with pathogenesis. Inflamm Bowel Dis. 2010;17:1936–42.CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Rufini S, Ciccacci C, Di Fusco D, Ruffa A, Pallone F, Novelli G, Biancone L, Borgiani P. Autophagy and inflammatory bowel disease: Association between variants of the autophagy-related IRGM gene and susceptibility to Crohn’s disease. Dig Liver Dis. 2015;47:744–50.CrossRefPubMedGoogle Scholar
  33. 33.
    Baskaran K, Pugazhendhi S, Ramakrishna BS. Association of IRGM gene mutations with inflammatory bowel disease in the Indian population. PLoS One. 2014;9:e106863.CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Glas J, Seiderer J, Bues S, Stallhofer J, Fries C, Olszak T, Tsekeri E, Wetzke M, Beigel F, Steib C, Friedrich M, Göke B, Diegelmann J, Czamara D, Brand S. IRGM variants and susceptibility to inflammatory bowel disease in the German population. PLoS One. 2013;8:e54338.CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Prescott NJ, Dominy KM, Kubo M, Lewis CM, Fisher SA, Redon R, Huang N, Stranger BE, Blaszczyk K, Hudspith B, Parkes G, Hosono N, Yamazaki K, Onnie CM, Forbes A, Dermitzakis ET, Nakamura Y, Mansfield JC, Sanderson J, Hurles ME, Roberts RG, Mathew CG. Independent and population-specific association of risk variants at the IRGM locus with Crohn’s disease. Hum Mol Genet. 2010;19:1828–39.CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Patterson NL, Mintern JD. Intersection of autophagy with pathways of antigen presentation. Protein Cell. 2012;3:911–20.CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Orsmark-Pietras C, Melén E, Vendelin J, Bruce S, Laitinen A, Laitinen LA, Lauener R, Riedler J, von Mutius E, Doekes G, Wickman M, van Hage M, Pershagen G, Scheynius A, Nyberg F, Kere J, PARSIFAL Genetics Study Group. Biological and genetic interaction between tenascin C and neuropeptide S receptor 1 in allergic diseases. Hum Mol Genet. 2008;17:1673–82.CrossRefPubMedGoogle Scholar
  38. 38.
    Smyth DJ, Cooper JD, Howson JM, Walker NM, Plagnol V, Stevens H, Clayton DG, Todd JA. PTPN22 Trp620 explains the association of chromosome 1p13 with type 1 diabetes and shows a statistical interaction with HLA class II genotypes. Diabetes. 2008;57:1730–7.CrossRefPubMedGoogle Scholar
  39. 39.
    Vitulano C, Tedeschi V, Paladini F, Sorrentino R, Fiorillo MT. The interplay between HLA-B27 and ERAP1/ERAP2 aminopeptidases: from anti-viral protection to spondyloarthritis. Clin Exp Immunol. 2017. doi: 10.1111/cei.13020.PubMedGoogle Scholar
  40. 40.
    Genetic Analysis of Psoriasis Consortium & the Wellcome Trust Case Control Consortium 2. A genome-wide association study identifies new psoriasis susceptibility loci and an interaction between HLA-C and ERAP1. Nat Genet. 2010;42:985–90.CrossRefGoogle Scholar
  41. 41.
    Hattori A, Tsujimoto M. Endoplasmic reticulum aminopeptidases: biochemistry, physiology and pathology. J Biochem. 2013;154:219–28.CrossRefPubMedGoogle Scholar
  42. 42.
    Mauramo M, Ramseier AM, Buser A, Tiercy JM, Weiger R, Waltimo T. Associations of HLA-A, -B and -DRB1 types with oral diseases in Swiss adults. PLoS One. 2014;9:e103527. doi:10.1371.CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Reichert S, Altermann W, Stein JM, Schaller HG, Machulla HK, Schulz S. Individual composition of human leukocyte antigens and periodontopathogens in the background of periodontitis. J Periodontol. 2013;84:100–9.CrossRefPubMedGoogle Scholar
  44. 44.
    El-Awady AR, Miles B, Scisci E, Kurago ZB, Palani CD, Arce RM, Waller JL, Genco CA, Slocum C, Manning M, Schoenlein PV, Cutler CW. Porphyromonas gingivalis evasion of autophagy and intracellular killing by human myeloid dendritic cells involves DC-SIGN-TLR2 crosstalk. PLoS Pathog. 2015;10:e1004647.CrossRefPubMedGoogle Scholar
  45. 45.
    Colombo AV, da Silva CM, Haffajee A, Colombo AP. Identification of intracellular oral species within human crevicular epithelial cells from subjects with chronic periodontitis by fluorescence in situ hybridization. J Periodontal Res. 2007;42:236–43.CrossRefPubMedGoogle Scholar
  46. 46.
    Bosshardt DD, Lang NP. The junctional epithelium: from health to disease. J Dent Res. 2005;84:9–20.CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Department of Conservative Dentistry and Periodontology, University HospitalLudwig-Maximilians-UniversityMunichGermany

Personalised recommendations