Inflammation Research

, Volume 66, Issue 12, pp 1075–1084 | Cite as

Malvidin attenuates pain and inflammation in rats with osteoarthritis by suppressing NF-κB signaling pathway

  • Teng Dai
  • Keqing Shi
  • Gang Chen
  • Yimin Shen
  • Ting Pan
Original Research Paper
  • 266 Downloads

Abstract

Objective

Malvidin is one of the most widespread anthocyanidins which exhibits significant antioxidant and anti-inflammatory activity. The aim of this paper is to investigate the effects of Malvidin on osteoarthritis (OA).

Materials and methods

We created an animal model of OA using Wistar rats administered by monosodium iodoacetate (MIA). Effects of Malvidin on hyperalgesia were evaluated by paw pressure tests and compression threshold test. Articular chondrocytes were isolated from the OA rats to detect the apoptotic chondrocytes using senescence-associated β-galactosidase (SA-β-gal) staining kit. The expression levels of pro-inflammatory cytokines and matrix metalloproteinase (MMPs) were assessed by western blot and qPCR. Luciferase assay was used to determine the impact of Malvidin on nuclear factor-kappa B (NF-κB) pathway.

Results

Malvidin treatment exhibited significant pain-relieving effects in OA rats and decreased the expression level of apoptotic marker SA-β-gal in chondrocytes. We found that the upregulated expressions of interleukin (IL)-1β, IL-6, tumor necrosis factor-α (TNF-α), and MMPs induced by MIA in cartilage tissues were significantly reversed by Malvidin. Furthermore, Malvidin inhibited NF-κB pathway via an NF-κB inhibitor (IκBα)-independent manner through suppressing p65 nuclear transportation in vitro.

Conclusions

Our findings suggest that Malvidin significantly attenuates the OA-induced pain and inflammation by inhibiting NF-κB signaling pathway and suppressing pro-inflammatory cytokine expression and chondrocyte apoptosis.

Keywords

Osteoarthritis (OA) Malvidin Nuclear factor-kappa B (NF-κB) signaling pathway Matrix metalloproteinase (MMP) 

Notes

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Research involving human participants and/or animals

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed.

Informed consent

Not applicable.

Funding

None.

References

  1. 1.
    Bijlsma JW, Berenbaum F, Lafeber FP. Osteoarthritis: an update with relevance for clinical practice. Lancet. 2011;377(9783):2115–26.CrossRefPubMedGoogle Scholar
  2. 2.
    Poole AR. Osteoarthritis as a whole joint disease. HSS J. 2012;8(1):4–6.CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Vos T, Flaxman AD, Naghavi M, Lozano R, Michaud C, Ezzati M, et al. Years lived with disability (YLDs) for 1160 sequelae of 289 diseases and injuries 1990–2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet. 2012;380(9859):2163–96.CrossRefPubMedGoogle Scholar
  4. 4.
    Wang K, Xu J, Hunter DJ, Ding C. Investigational drugs for the treatment of osteoarthritis. Expert Opin Investig Drugs. 2015;24(12):1539–56.CrossRefPubMedGoogle Scholar
  5. 5.
    Hunter DJ, Felson DT. Osteoarthritis. BMJ. 2006;332(7542):639–42.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Hu H, Yang B, Li Y, Zhang S, Li Z. Blocking of the P2X7 receptor inhibits the activation of the MMP-13 and NF-kappaB pathways in the cartilage tissue of rats with osteoarthritis. Int J Mol Med. 2016;38(6):1922–32.CrossRefPubMedGoogle Scholar
  7. 7.
    Bian Q, Wang YJ, Liu SF, Li YP. Osteoarthritis: genetic factors, animal models, mechanisms, and therapies. Front Biosci (Elite Ed). 2012;4:474–1000.Google Scholar
  8. 8.
    Loeser RF, Goldring SR, Scanzello CR, Goldring MB. Osteoarthritis: a disease of the joint as an organ. Arthritis Rheum. 2012;64(6):1697–707.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Rigoglou S, Papavassiliou AG. The NF-kappaB signalling pathway in osteoarthritis. Int J Biochem Cell Biol. 2013;45(11):2580–4.CrossRefPubMedGoogle Scholar
  10. 10.
    Oeckinghaus A, Ghosh S. The NF-kappaB family of transcription factors and its regulation. Cold Spring Harb Perspect Biol. 2009;1(4):a000034.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Niederberger E, Geisslinger G. The IKK-NF-kappaB pathway: a source for novel molecular drug targets in pain therapy? FASEB J. 2008;22(10):3432–42.CrossRefPubMedGoogle Scholar
  12. 12.
    Lianxu C, Hongti J, Changlong Y. NF-kappaBp65-specific siRNA inhibits expression of genes of COX-2, NOS-2 and MMP-9 in rat IL-1beta-induced and TNF-alpha-induced chondrocytes. Osteoarthr Cartil. 2006;14(4):367–76.CrossRefPubMedGoogle Scholar
  13. 13.
    Tetlow LC, Adlam DJ, Woolley DE. Matrix metalloproteinase and proinflammatory cytokine production by chondrocytes of human osteoarthritic cartilage: associations with degenerative changes. Arthr Rheum. 2001;44(3):585–94.CrossRefGoogle Scholar
  14. 14.
    Bognar E, Sarszegi Z, Szabo A, Debreceni B, Kalman N, Tucsek Z, et al. Antioxidant and anti-inflammatory effects in RAW264.7 macrophages of Malvidin, a major red wine polyphenol. PLoS ONE. 2013;8(6):e65355.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Leighton GE, Rodriguez RE, Hill RG, Hughes J. Kappa-opioid agonists produce antinociception after i.v. and i.c.v. but not intrathecal administration in the rat. Br J Pharmacol. 1988;93(3):553–60.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Barton NJ, Strickland IT, Bond SM, Brash HM, Bate ST, Wilson AW, et al. Pressure application measurement (PAM): a novel behavioural technique for measuring hypersensitivity in a rat model of joint pain. J Neurosci Methods. 2007;163(1):67–75.CrossRefPubMedGoogle Scholar
  17. 17.
    Aqil F, Gupta A, Munagala R, Jeyabalan J, Kausar H, Sharma RJ, et al. Antioxidant and antiproliferative activities of anthocyanin/ellagitannin-enriched extracts from Syzygium cumini L. (Jamun, the Indian Blackberry). Nutr Cancer. 2012;64(3):428–38.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Lee SG, Kim B, Yang Y, Pham TX, Park YK, Manatou J, et al. Berry anthocyanins suppress the expression and secretion of proinflammatory mediators in macrophages by inhibiting nuclear translocation of NF-kappaB independent of NRF2-mediated mechanism. J Nutr Biochem. 2014;25(4):404–11.CrossRefPubMedGoogle Scholar
  19. 19.
    Nizamutdinova IT, Kim YM, Chung JI, Shin SC, Jeong YK, Seo HG, et al. Anthocyanins from black soybean seed coats preferentially inhibit TNF-alpha-mediated induction of VCAM-1 over ICAM-1 through the regulation of GATAs and IRF-1. J Agric Food Chem. 2009;57(16):7324–30.CrossRefPubMedGoogle Scholar
  20. 20.
    Garcia-Alonso M, Rimbach G, Rivas-Gonzalo JC, De Pascual-Teresa S. Antioxidant and cellular activities of anthocyanins and their corresponding vitisins A—studies in platelets, monocytes, and human endothelial cells. J Agric Food Chem. 2004;52(11):3378–84.CrossRefPubMedGoogle Scholar
  21. 21.
    Kanterman J, Sade-Feldman M, Baniyash M. New insights into chronic inflammation-induced immunosuppression. Semin Cancer Biol. 2012;22(4):307–18.CrossRefPubMedGoogle Scholar
  22. 22.
    Lee C, Han D, Kim B, Baek N, Baik BK. Antioxidant and anti-hypertensive activity of anthocyanin-rich extracts from hulless pigmented barley cultivars. Int J Food Sci Technol. 2013;48(5):984–91.CrossRefGoogle Scholar
  23. 23.
    Huang WY, Wang J, Liu YM, Zheng QS, Li CY. Inhibitory effect of Malvidin on TNF-alpha-induced inflammatory response in endothelial cells. Eur J Pharmacol. 2014;723:67–72.CrossRefPubMedGoogle Scholar
  24. 24.
    Kumar A, Takada Y, Boriek AM, Aggarwal BB. Nuclear factor-kappaB: its role in health and disease. J Mol Med (Berl). 2004;82(7):434–48.CrossRefGoogle Scholar
  25. 25.
    Miagkov AV, Kovalenko DV, Brown CE, Didsbury JR, Cogswell JP, Stimpson SA, et al. NF-kappaB activation provides the potential link between inflammation and hyperplasia in the arthritic joint. Proc Natl Acad Sci USA. 1998;95(23):13859–64.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Gerlag DM, Ransone L, Tak PP, Han Z, Palanki M, Barbosa MS, et al. The effect of a T cell-specific NF-kappa B inhibitor on in vitro cytokine production and collagen-induced arthritis. J Immunol. 2000;165(3):1652–8.CrossRefPubMedGoogle Scholar
  27. 27.
    Blanco FJ, Guitian R, Moreno J, de Toro FJ, Galdo F. Effect of antiinflammatory drugs on COX-1 and COX-2 activity in human articular chondrocytes. J Rheumatol. 1999;26(6):1366–73.PubMedGoogle Scholar
  28. 28.
    Csaki C, Mobasheri A, Shakibaei M. Synergistic chondroprotective effects of curcumin and resveratrol in human articular chondrocytes: inhibition of IL-1beta-induced NF-kappaB-mediated inflammation and apoptosis. Arthr Res Ther. 2009;11(6):R165.CrossRefGoogle Scholar
  29. 29.
    Fernandes JC, Martel-Pelletier J, Pelletier JP. The role of cytokines in osteoarthritis pathophysiology. Biorheology. 2002;39(1–2):237–46.PubMedGoogle Scholar
  30. 30.
    Shakibaei M, John T, Schulze-Tanzil G, Lehmann I, Mobasheri A. Suppression of NF-kappaB activation by curcumin leads to inhibition of expression of cyclo-oxygenase-2 and matrix metalloproteinase-9 in human articular chondrocytes: implications for the treatment of osteoarthritis. Biochem Pharmacol. 2007;73(9):1434–45.CrossRefPubMedGoogle Scholar
  31. 31.
    Velinov N, Poptodorov G, Gabrovski N, Gabrovski S. The role of matrix metalloproteinases in the tumor growth and metastasis. Khirurgiia (Sofiia). 2010;1:44–9.Google Scholar
  32. 32.
    Ozler K, Aktas E, Atay C, Yilmaz B, Arikan M, Gungor S. Serum and knee synovial fluid matrix metalloproteinase-13 and tumor necrosis factor-alpha levels in patients with late stage osteoarthritis. Acta Orthop Traumatol Turc. 2016;50(6):670–3.CrossRefPubMedGoogle Scholar
  33. 33.
    Frank S, Peters MA, Wehmeyer C, Strietholt S, Koers-Wunrau C, Bertrand J, et al. Regulation of matrix metalloproteinase-3 and matrix metalloproteinase-13 by SUMO-2/3 through the transcription factor NF-kappaB. Ann Rheum Dis. 2013;72(11):1874–81.CrossRefPubMedGoogle Scholar
  34. 34.
    Perkins ND. Integrating cell-signalling pathways with NF-kappaB and IKK function. Nat Rev Mol Cell Biol. 2007;8(1):49–62.CrossRefPubMedGoogle Scholar
  35. 35.
    Gilmore TD. The Rel/NF-kappaB signal transduction pathway: introduction. Oncogene. 1999;18(49):6842–4.CrossRefPubMedGoogle Scholar
  36. 36.
    Gilmore TD. Introduction to NF-kappaB: players, pathways, perspectives. Oncogene. 2006;25(51):6680–4.CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Teng Dai
    • 1
  • Keqing Shi
    • 1
  • Gang Chen
    • 1
  • Yimin Shen
    • 1
  • Ting Pan
    • 1
  1. 1.Department of OrthopedicsNanjing Medical University Affiliated Wuxi Second HospitalWuxiChina

Personalised recommendations