Advertisement

Inflammation Research

, Volume 66, Issue 4, pp 283–302 | Cite as

The inflammatory response triggered by Influenza virus: a two edged sword

  • Luciana P. Tavares
  • Mauro M. Teixeira
  • Cristiana C. Garcia
Review

Abstract

Influenza A virus (IAV) is a relevant respiratory tract pathogen leading to a great number of deaths and hospitalizations worldwide. Secondary bacterial infections are a very common cause of IAV associated morbidity and mortality. The robust inflammatory response that follows infection is important for the control of virus proliferation but is also associated with lung damage, morbidity and death. The role of the different components of immune response underlying protection or disease during IAV infection is not completely elucidated. Overall, in the context of IAV infection, inflammation is a ‘double edge sword’ necessary to control infection but causing disease. Therefore, a growing number of studies suggest that immunomodulatory strategies may improve disease outcome without affecting the ability of the host to deal with infection. This review summarizes recent aspects of the inflammatory responses triggered by IAV that are preferentially involved in causing severe pulmonary disease and the anti-inflammatory strategies that have been suggested to treat influenza induced immunopathology.

Keywords

Inflammation Influenza Immunopathology Secondary infection 

Notes

Acknowledgments

We are grateful to Fundação de Amparo a Pesquisas do Estado de Minas Gerais (FAPEMIG, Brazil), Conselho Nacional do Desenvolvimento Cientifico e Tecnológico (CNPq, Brazil), The Institute of Science and Technology in Dengue (INCT in Dengue, CNPq/Brazil) for financial support.

Compliance with ethical standards

Conflict of interests

The authors declare that there is no conflict of interests regarding the publication of this paper.

References

  1. 1.
    WHO. Influenza (Seasonal) - Fact sheet N°211. http://www.who.int/mediacentre/factsheets/fs211/en/ (2014). Accessed 02 Feb 2016.
  2. 2.
    Berri F, et al. Switch from protective to adverse inflammation during influenza: viral determinants and hemostasis are caught as culprits. Cell Mol Life Sci. 2014;71(5):885–98.PubMedCrossRefGoogle Scholar
  3. 3.
    Hutchinson EC, Fodor E. Transport of the influenza virus genome from nucleus to nucleus. Viruses. 2013;5(10):2424–46.PubMedPubMedCentralCrossRefGoogle Scholar
  4. 4.
    Yoon SW, Webby RJ, Webster RG. Evolution and ecology of influenza A viruses. Curr Top Microbiol Immunol. 2014;385:359–75.PubMedGoogle Scholar
  5. 5.
    Iwasaki A, Pillai PS. Innate immunity to influenza virus infection. Nat Rev Immunol. 2014;14(5):315–28.PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Kuiken T, et al. Pathogenesis of influenza virus infections: the good, the bad and the ugly. Curr Opin Virol. 2012;2(3):276–86.PubMedCrossRefGoogle Scholar
  7. 7.
  8. 8.
    Edinger TO, Pohl MO, Stertz S. Entry of influenza A virus: host factors and antiviral targets. J Gen Virol. 2014;95(Pt 2):263–77.PubMedCrossRefGoogle Scholar
  9. 9.
    Kohlmeier JE, Woodland DL. Immunity to respiratory viruses. Annu Rev Immunol. 2009;27:61–82.PubMedCrossRefGoogle Scholar
  10. 10.
    Hendrickson CM, Matthay MA. Viral pathogens and acute lung injury: investigations inspired by the SARS epidemic and the 2009 H1N1 influenza pandemic. Semin Respir Crit Care Med. 2013;34(4):475–86.PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Bruder D, Srikiatkhachorn A, Enelow RI. Cellular immunity and lung injury in respiratory virus infection. Viral Immunol. 2006;19(2):147–55.PubMedCrossRefGoogle Scholar
  12. 12.
    de Jong MD, et al. Fatal outcome of human influenza A (H5N1) is associated with high viral load and hypercytokinemia. Nat Med. 2006;12(10):1203–7.PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Peiris JS, et al. Innate immune responses to influenza A H5N1: friend or foe? Trends Immunol. 2009;30(12):574–84.PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    Baskin CR, et al. Early and sustained innate immune response defines pathology and death in nonhuman primates infected by highly pathogenic influenza virus. Proc Natl Acad Sci USA. 2009;106(9):3455–60.PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Perrone LA, et al. Mice lacking both TNF and IL-1 receptors exhibit reduced lung inflammation and delay in onset of death following infection with a highly virulent H5N1 virus. J Infect Dis. 2010;202(8):1161–70.PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Akira S, Uematsu S, Takeuchi O. Pathogen recognition and innate immunity. Cell. 2006;124(4):783–801.PubMedCrossRefGoogle Scholar
  17. 17.
    Xagorari A, Chlichlia K. Toll-like receptors and viruses: induction of innate antiviral immune responses. Open Microbiol J. 2008;2:49–59.PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Kawai T, Akira S. Toll-like receptors and their crosstalk with other innate receptors in infection and immunity. Immunity. 2011;34(5):637–50.PubMedCrossRefGoogle Scholar
  19. 19.
    Imai Y, et al. Identification of oxidative stress and Toll-like receptor 4 signaling as a key pathway of acute lung injury. Cell. 2008;133(2):235–49.PubMedCrossRefGoogle Scholar
  20. 20.
    Le Goffic R, et al. Cutting edge: influenza A virus activates TLR3-dependent inflammatory and RIG-I-dependent antiviral responses in human lung epithelial cells. J Immunol. 2007;178(6):3368–72.PubMedCrossRefGoogle Scholar
  21. 21.
    Le Goffic R, et al. Detrimental contribution of the Toll-like receptor (TLR)3 to influenza A virus-induced acute pneumonia. PLoS Pathog. 2006;2(6):e53.PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Guillot L, et al. Involvement of toll-like receptor 3 in the immune response of lung epithelial cells to double-stranded RNA and influenza A virus. J Biol Chem. 2005;280(7):5571–80.PubMedCrossRefGoogle Scholar
  23. 23.
    Diebold SS, et al. Innate antiviral responses by means of TLR7-mediated recognition of single-stranded RNA. Science. 2004;303(5663):1529–31.PubMedCrossRefGoogle Scholar
  24. 24.
    Lee SM, et al. Toll-like receptor 10 is involved in induction of innate immune responses to influenza virus infection. Proc Natl Acad Sci USA. 2014;111(10):3793–8.PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Owen DM, Gale M Jr. Fighting the flu with inflammasome signaling. Immunity. 2009;30(4):476–8.PubMedCrossRefGoogle Scholar
  26. 26.
    Allen IC, et al. The NLRP3 inflammasome mediates in vivo innate immunity to influenza A virus through recognition of viral RNA. Immunity. 2009;30(4):556–65.PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    McAuley JL, et al. Activation of the NLRP3 inflammasome by IAV virulence protein PB1-F2 contributes to severe pathophysiology and disease. PLoS Pathog. 2013;9(5):e1003392.PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Rehwinkel J, et al. RIG-I detects viral genomic RNA during negative-strand RNA virus infection. Cell. 2010;140(3):397–408.PubMedCrossRefGoogle Scholar
  29. 29.
    Kato H, et al. Cell type-specific involvement of RIG-I in antiviral response. Immunity. 2005;23(1):19–28.PubMedCrossRefGoogle Scholar
  30. 30.
    Kandasamy M, et al. RIG-I signaling Is critical for efficient polyfunctional T cell responses during influenza virus infection. PLoS Pathog. 2016;12(7):e1005754.PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Tisoncik JR, et al. Into the eye of the cytokine storm. Microbiol Mol Biol Rev. 2012;76(1):16–32.PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Walsh KB, et al. Suppression of cytokine storm with a sphingosine analog provides protection against pathogenic influenza virus. Proc Natl Acad Sci USA. 2011;108(29):12018–23.PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Damjanovic D, et al. Immunopathology in influenza virus infection: uncoupling the friend from foe. Clin Immunol. 2012;144(1):57–69.PubMedCrossRefGoogle Scholar
  34. 34.
    Tscherne DM, Garcia-Sastre A. Virulence determinants of pandemic influenza viruses. J Clin Invest. 2011;121(1):6–13.PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Arankalle VA, et al. Role of host immune response and viral load in the differential outcome of pandemic H1N1 (2009) influenza virus infection in Indian patients. PLoS One. 2010;5(10) pii: e13099.Google Scholar
  36. 36.
    Cheng XW, et al. Three fatal cases of pandemic 2009 influenza A virus infection in Shenzhen are associated with cytokine storm. Respir Physiol Neurobiol. 2011;175(1):185–7.PubMedCrossRefGoogle Scholar
  37. 37.
    Li N, et al. Influenza infection induces host DNA damage and dynamic DNA damage responses during tissue regeneration. Cell Mol Life Sci. 2015.Google Scholar
  38. 38.
    Ng HH, et al. Doxycycline treatment attenuates acute lung injury in mice infected with virulent influenza H3N2 virus: involvement of matrix metalloproteinases. Exp Mol Pathol. 2012;92(3):287–95.PubMedCrossRefGoogle Scholar
  39. 39.
    Reshi ML, Su YC, Hong JR. RNA viruses: ROS-mediated cell death. Int J Cell Biol. 2014;2014:467452.PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Kash JC, Taubenberger JK. Infectious disease theme issue: the role of viral, host, and secondary bacterial factors in influenza pathogenesis. Am J Pathol. 2015;185(6):1528–36.PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    La Gruta NL, et al. A question of self-preservation: immunopathology in influenza virus infection. Immunol Cell Biol. 2007;85(2):85–92.PubMedCrossRefGoogle Scholar
  42. 42.
    Hsieh YC, et al. Influenza pandemics: past, present and future. J Formos Med Assoc. 2006;105(1):1–6.PubMedCrossRefGoogle Scholar
  43. 43.
    Kaiser L, et al. Symptom pathogenesis during acute influenza: interleukin-6 and other cytokine responses. J Med Virol. 2001;64(3):262–8.PubMedCrossRefGoogle Scholar
  44. 44.
    Hayden FG, et al. Local and systemic cytokine responses during experimental human influenza A virus infection. Relation to symptom formation and host defense. J Clin Invest. 1998;101(3):643–9.PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Julkunen I, et al. Molecular pathogenesis of influenza A virus infection and virus-induced regulation of cytokine gene expression. Cytokine Growth Factor Rev. 2001;12(2–3):171–80.PubMedCrossRefGoogle Scholar
  46. 46.
    Jewell NA, et al. Lambda interferon is the predominant interferon induced by influenza A virus infection in vivo. J Virol. 2010;84(21):11515–22.PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Wareing MD, et al. Chemokine expression during the development and resolution of a pulmonary leukocyte response to influenza A virus infection in mice. J Leukoc Biol. 2004;76(4):886–95.PubMedCrossRefGoogle Scholar
  48. 48.
    To KF, et al. Pathology of fatal human infection associated with avian influenza A H5N1 virus. J Med Virol. 2001;63(3):242–6.PubMedCrossRefGoogle Scholar
  49. 49.
    Lee N, et al. Cytokine response patterns in severe pandemic 2009 H1N1 and seasonal influenza among hospitalized adults. PLoS One. 2011;6(10):e26050.PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    Fensterl V, Sen GC. Interferons and viral infections. BioFactors. 2009;35(1):14–20.PubMedCrossRefGoogle Scholar
  51. 51.
    Chelbi-Alix MK, Wietzerbin J. Interferon, a growing cytokine family: 50 years of interferon research. Biochimie. 2007;89(6–7):713–8.PubMedCrossRefGoogle Scholar
  52. 52.
    Price GE, Gaszewska-Mastarlarz A, Moskophidis D. The role of alpha/beta and gamma interferons in development of immunity to influenza A virus in mice. J Virol. 2000;74(9):3996–4003.PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    Szretter KJ, et al. Early control of H5N1 influenza virus replication by the type I interferon response in mice. J Virol. 2009;83(11):5825–34.PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    Davidson S, et al. Pathogenic potential of interferon alphabeta in acute influenza infection. Nat Commun. 2014;5:3864.PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    Randall RE, Goodbourn S. Interferons and viruses: an interplay between induction, signalling, antiviral responses and virus countermeasures. J Gen Virol. 2008;89(Pt 1):1–47.PubMedCrossRefGoogle Scholar
  56. 56.
    Shahangian A, et al. Type I IFNs mediate development of post influenza bacterial pneumonia in mice. J Clin Invest. 2009;119(7):1910–20.PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    Stifter SA, et al. Functional interplay between type I and II interferons is essential to limit influenza A virus-induced tissue inflammation. PLoS Pathog. 2016;12(1):e1005378.PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Heise MT, Virgin HWT. The T-cell-independent role of gamma interferon and tumor necrosis factor alpha in macrophage activation during murine cytomegalovirus and herpes simplex virus infections. J Virol. 1995;69(2):904–9.PubMedPubMedCentralGoogle Scholar
  59. 59.
    Stanton GJ, et al. Nondetectable levels of interferon gamma is a critical host defense during the first day of herpes simplex virus infection. Microb Pathog. 1987;3(3):179–83.PubMedCrossRefGoogle Scholar
  60. 60.
    Boehm U, et al. Cellular responses to interferon-gamma. Annu Rev Immunol. 1997;15:749–95.PubMedCrossRefGoogle Scholar
  61. 61.
    Verhoeven D, Perry S, Pryharski K. Control of influenza infection is impaired by diminished interferon-gamma secretion by CD4 T cell in the lungs of toddlers. J Leukoc Biol. 2016;100(1):203–12.PubMedCrossRefGoogle Scholar
  62. 62.
    Turner SJ, et al. Disregulated influenza A virus-specific CD8+ T cell homeostasis in the absence of IFN-gamma signaling. J Immunol. 2007;178(12):7616–22.PubMedCrossRefGoogle Scholar
  63. 63.
    Ramana CV, et al. Inflammatory impact of IFN-gamma in CD8+ T cell-mediated lung injury is mediated by both Stat1-dependent and -independent pathways. Am J Physiol Lung Cell Mol Physiol. 2015;308(7):L650–7.PubMedPubMedCentralCrossRefGoogle Scholar
  64. 64.
    Baumgarth N, Kelso A. In vivo blockade of gamma interferon affects the influenza virus-induced humoral and the local cellular immune response in lung tissue. J Virol. 1996;70(7):4411–8.PubMedPubMedCentralGoogle Scholar
  65. 65.
    Sommereyns C, et al. IFN-lambda (IFN-lambda) is expressed in a tissue-dependent fashion and primarily acts on epithelial cells in vivo. PLoS Pathog. 2008;4(3):e1000017.PubMedPubMedCentralCrossRefGoogle Scholar
  66. 66.
    Mordstein M, et al. Interferon-lambda contributes to innate immunity of mice against influenza A virus but not against hepatotropic viruses. PLoS Pathog. 2008;4(9):e1000151.PubMedPubMedCentralCrossRefGoogle Scholar
  67. 67.
    van de Sandt CE, Kreijtz JH, Rimmelzwaan GF. Evasion of influenza A viruses from innate and adaptive immune responses. Viruses. 2012;4(9):1438–76.PubMedPubMedCentralCrossRefGoogle Scholar
  68. 68.
    Crotta S, et al. Type I and type III interferons drive redundant amplification loops to induce a transcriptional signature in influenza-infected airway epithelia. PLoS Pathog. 2013;9(11):e1003773.PubMedPubMedCentralCrossRefGoogle Scholar
  69. 69.
    Acosta-Rodriguez EV, et al. Interleukins 1beta and 6 but not transforming growth factor-beta are essential for the differentiation of interleukin 17-producing human T helper cells. Nat Immunol. 2007;8(9):942–9.PubMedCrossRefGoogle Scholar
  70. 70.
    Luft T, et al. IL-1 beta enhances CD40 ligand-mediated cytokine secretion by human dendritic cells (DC): a mechanism for T cell-independent DC activation. J Immunol. 2002;168(2):713–22.PubMedCrossRefGoogle Scholar
  71. 71.
    Ichinohe T, et al. Inflammasome recognition of influenza virus is essential for adaptive immune responses. J Exp Med. 2009;206(1):79–87.PubMedPubMedCentralCrossRefGoogle Scholar
  72. 72.
    Schmitz N, et al. Interleukin-1 is responsible for acute lung immunopathology but increases survival of respiratory influenza virus infection. J Virol. 2005;79(10):6441–8.PubMedPubMedCentralCrossRefGoogle Scholar
  73. 73.
    Liu Y, et al. Genetic variants in IL1A and IL1B contribute to the susceptibility to 2009 pandemic H1N1 influenza A virus. BMC Immunol. 2013;14:37.PubMedPubMedCentralCrossRefGoogle Scholar
  74. 74.
    Robinson KM, et al. Influenza A exacerbates Staphylococcus aureus pneumonia by attenuating IL-1beta production in mice. J Immunol. 2013;191(10):5153–9.PubMedCrossRefGoogle Scholar
  75. 75.
    Guarda G, et al. Type I interferon inhibits interleukin-1 production and inflammasome activation. Immunity. 2011;34(2):213–23.PubMedCrossRefGoogle Scholar
  76. 76.
    Chiaretti A, et al. IL-1 beta and IL-6 upregulation in children with H1N1 influenza virus infection. Mediat Inflamm. 2013;2013:495848.CrossRefGoogle Scholar
  77. 77.
    Griffith JW, Sokol CL, Luster AD. Chemokines and chemokine receptors: positioning cells for host defense and immunity. Annu Rev Immunol. 2014;32:659–702.PubMedCrossRefGoogle Scholar
  78. 78.
    Yamaya M, et al. Magnitude of influenza virus replication and cell damage is associated with interleukin-6 production in primary cultures of human tracheal epithelium. Respir Physiol Neurobiol. 2014;202:16–23.PubMedCrossRefGoogle Scholar
  79. 79.
    Shi X, et al. Inhibition of the inflammatory cytokine tumor necrosis factor-alpha with etanercept provides protection against lethal H1N1 influenza infection in mice. Crit Care. 2013;17(6):R301.PubMedPubMedCentralCrossRefGoogle Scholar
  80. 80.
    Szretter KJ, et al. Role of host cytokine responses in the pathogenesis of avian H5N1 influenza viruses in mice. J Virol. 2007;81(6):2736–44.PubMedCrossRefGoogle Scholar
  81. 81.
    Hamada H, et al. Tc17, a unique subset of CD8 T cells that can protect against lethal influenza challenge. J Immunol. 2009;182(6):3469–81.PubMedPubMedCentralCrossRefGoogle Scholar
  82. 82.
    McKinstry KK, et al. IL-10 deficiency unleashes an influenza-specific Th17 response and enhances survival against high-dose challenge. J Immunol. 2009;182(12):7353–63.PubMedPubMedCentralCrossRefGoogle Scholar
  83. 83.
    Wang X, et al. A critical role of IL-17 in modulating the B-cell response during H5N1 influenza virus infection. Cell Mol Immunol. 2011;8(6):462–8.PubMedPubMedCentralCrossRefGoogle Scholar
  84. 84.
    Crowe CR, et al. Critical role of IL-17RA in immunopathology of influenza infection. J Immunol. 2009;183(8):5301–10.PubMedPubMedCentralCrossRefGoogle Scholar
  85. 85.
    Bermejo-Martin JF, et al. Th1 and Th17 hypercytokinemia as early host response signature in severe pandemic influenza. Crit Care. 2009;13(6):R201.PubMedPubMedCentralCrossRefGoogle Scholar
  86. 86.
    Liu FD, et al. Timed action of IL-27 protects from immunopathology while preserving defense in influenza. PLoS Pathog. 2014;10(5):e1004110.PubMedPubMedCentralCrossRefGoogle Scholar
  87. 87.
    Mayer KD, et al. Cutting edge: T-bet and IL-27R are critical for in vivo IFN-gamma production by CD8 T cells during infection. J Immunol. 2008;180(2):693–7.PubMedCrossRefGoogle Scholar
  88. 88.
    Liu L, et al. Influenza A virus induces interleukin-27 through cyclooxygenase-2 and protein kinase A signaling. J Biol Chem. 2012;287(15):11899–910.PubMedPubMedCentralCrossRefGoogle Scholar
  89. 89.
    Ivanov S, et al. Interleukin-22 reduces lung inflammation during influenza A virus infection and protects against secondary bacterial infection. J Virol. 2013;87(12):6911–24.PubMedPubMedCentralCrossRefGoogle Scholar
  90. 90.
    Pociask DA, et al. IL-22 is essential for lung epithelial repair following influenza infection. Am J Pathol. 2013;182(4):1286–96.PubMedPubMedCentralCrossRefGoogle Scholar
  91. 91.
    Uhlig S, Goggel R, Engel S. Mechanisms of platelet-activating factor (PAF)-mediated responses in the lung. Pharmacol Rep. 2005;57(Suppl):206–21.PubMedGoogle Scholar
  92. 92.
    Ishii S, Shimizu T. Platelet-activating factor (PAF) receptor and genetically engineered PAF receptor mutant mice. Prog Lipid Res. 2000;39(1):41–82.PubMedCrossRefGoogle Scholar
  93. 93.
    Weijer S, et al. Host response of platelet-activating factor receptor-deficient mice during pulmonary tuberculosis. Immunology. 2003;109(4):552–6.PubMedPubMedCentralCrossRefGoogle Scholar
  94. 94.
    Montrucchio G, Alloatti G, Camussi G. Role of platelet-activating factor in cardiovascular pathophysiology. Physiol Rev. 2000;80(4):1669–99.PubMedGoogle Scholar
  95. 95.
    Chao W, Olson MS. Platelet-activating factor: receptors and signal transduction. Biochem J. 1993;292(Pt 3):617–29.PubMedPubMedCentralCrossRefGoogle Scholar
  96. 96.
    Garcia CC, et al. Platelet-activating factor receptor plays a role in lung injury and death caused by influenza A in mice. plos Pathog. 2010;6(11):e1001171.PubMedPubMedCentralCrossRefGoogle Scholar
  97. 97.
    van der Sluijs KF, et al. Involvement of the platelet-activating factor receptor in host defense against Streptococcus pneumoniae during postinfluenza pneumonia. Am J Physiol Lung Cell Mol Physiol. 2006;290(1):L194–9.PubMedCrossRefGoogle Scholar
  98. 98.
    McCarthy MK, Weinberg JB. Eicosanoids and respiratory viral infection: coordinators of inflammation and potential therapeutic targets. Mediat Inflamm. 2012;2012:236345.CrossRefGoogle Scholar
  99. 99.
    Yokomizo T, et al. A G-protein-coupled receptor for leukotriene B4 that mediates chemotaxis. Nature. 1997;387(6633):620–4.PubMedCrossRefGoogle Scholar
  100. 100.
    Yokomizo T, et al. A second leukotriene B(4) receptor, BLT2. A new therapeutic target in inflammation and immunological disorders. J Exp Med. 2000;192(3):421–32.PubMedPubMedCentralCrossRefGoogle Scholar
  101. 101.
    Tager AM, Luster AD. BLT1 and BLT2: the leukotriene B(4) receptors. Prostaglandins Leukot Essent Fatty Acids. 2003;69(2–3):123–34.PubMedCrossRefGoogle Scholar
  102. 102.
    Gaudreault E, Gosselin J. Leukotriene B4 induces release of antimicrobial peptides in lungs of virally infected mice. J Immunol. 2008;180(9):6211–21.PubMedCrossRefGoogle Scholar
  103. 103.
    Widegren H, et al. LTB4 increases nasal neutrophil activity and conditions neutrophils to exert antiviral effects. Respir Med. 2011;105(7):997–1006.PubMedCrossRefGoogle Scholar
  104. 104.
    Ricklin D, et al. Complement: a key system for immune surveillance and homeostasis. Nat Immunol. 2010;11(9):785–97.PubMedPubMedCentralCrossRefGoogle Scholar
  105. 105.
    Sun S, et al. Inhibition of complement activation alleviates acute lung injury induced by highly pathogenic avian influenza H5N1 virus infection. Am J Respir Cell Mol Biol. 2013;49(2):221–30.PubMedCrossRefGoogle Scholar
  106. 106.
    Tong HH, et al. Deletion of the complement C5a receptor alleviates the severity of acute pneumococcal otitis media following influenza A virus infection in mice. PLoS One. 2014;9(4):e95160.PubMedPubMedCentralCrossRefGoogle Scholar
  107. 107.
    Xu GL, et al. C5a/C5aR pathway is essential for the pathogenesis of murine viral fulminant hepatitis by way of potentiating Fgl2/fibroleukin expression. Hepatology. 2014;60(1):114–24.PubMedCrossRefGoogle Scholar
  108. 108.
    Guo RF, Ward PA. Role of C5a in inflammatory responses. Annu Rev Immunol. 2005;23:821–52.PubMedCrossRefGoogle Scholar
  109. 109.
    Garcia CC, et al. Complement C5 activation during influenza A infection in mice contributes to neutrophil recruitment and lung injury. PLoS One. 2013;8(5):e64443.PubMedPubMedCentralCrossRefGoogle Scholar
  110. 110.
    Monsalvo AC, et al. Severe pandemic 2009 H1N1 influenza disease due to pathogenic immune complexes. Nat Med. 2011;17(2):195–9.PubMedCrossRefGoogle Scholar
  111. 111.
    O’Brien KB, et al. A protective role for complement C3 protein during pandemic 2009 H1N1 and H5N1 influenza A virus infection. PLoS ONE. 2011;6(3):e17377.PubMedPubMedCentralCrossRefGoogle Scholar
  112. 112.
    Sun S, et al. Treatment with anti-C5a antibody improves the outcome of H7N9 virus infection in African green monkeys. Clin Infect Dis. 2015;60(4):586–95.PubMedCrossRefGoogle Scholar
  113. 113.
    Turner MD, et al. Cytokines and chemokines: at the crossroads of cell signalling and inflammatory disease. Biochim Biophys Acta. 2014;1843(11):2563–82.PubMedCrossRefGoogle Scholar
  114. 114.
    Gao R, et al. Cytokine and chemokine profiles in lung tissues from fatal cases of 2009 pandemic influenza A (H1N1): role of the host immune response in pathogenesis. Am J Pathol. 2013;183(4):1258–68.PubMedCrossRefGoogle Scholar
  115. 115.
    van Helden MJ, Zaiss DM, Sijts AJ. CCR2 defines a distinct population of NK cells and mediates their migration during influenza virus infection in mice. PLoS One. 2012;7(12):e52027.PubMedPubMedCentralCrossRefGoogle Scholar
  116. 116.
    Maelfait J, et al. A20 deficiency in lung epithelial cells protects against influenza A virus infection. PLoS Pathog. 2016;12(1):e1005410.PubMedPubMedCentralCrossRefGoogle Scholar
  117. 117.
    Ellis GT, et al. TRAIL + monocytes and monocyte-related cells cause lung damage and thereby increase susceptibility to influenza-Streptococcus pneumoniae coinfection. EMBO Rep. 2015;16(9):1203–18.PubMedPubMedCentralCrossRefGoogle Scholar
  118. 118.
    Lin KL, et al. CCR2+ monocyte-derived dendritic cells and exudate macrophages produce influenza-induced pulmonary immune pathology and mortality. J Immunol. 2008;180(4):2562–72.PubMedCrossRefGoogle Scholar
  119. 119.
    Dessing MC, et al. Monocyte chemoattractant protein 1 contributes to an adequate immune response in influenza pneumonia. Clin Immunol. 2007;125(3):328–36.PubMedCrossRefGoogle Scholar
  120. 120.
    Narasaraju T, et al. MCP-1 antibody treatment enhances damage and impedes repair of the alveolar epithelium in influenza pneumonitis. Am J Respir Cell Mol Biol. 2010;42(6):732–43.PubMedCrossRefGoogle Scholar
  121. 121.
    Sakai S, et al. Therapeutic effect of anti-macrophage inflammatory protein 2 antibody on influenza virus-induced pneumonia in mice. J Virol. 2000;74(5):2472–6.PubMedPubMedCentralCrossRefGoogle Scholar
  122. 122.
    Wareing MD, et al. CXCR2 is required for neutrophil recruitment to the lung during influenza virus infection, but is not essential for viral clearance. Viral Immunol. 2007;20(3):369–78.PubMedCrossRefGoogle Scholar
  123. 123.
    DeBerge MP, et al. ADAM17-mediated processing of TNF-alpha expressed by antiviral effector CD8+ T cells is required for severe T-cell-mediated lung injury. PLoS One. 2013;8(11):e79340.PubMedPubMedCentralCrossRefGoogle Scholar
  124. 124.
    Tate MD, et al. Critical role of airway macrophages in modulating disease severity during influenza virus infection of mice. J Virol. 2010;84(15):7569–80.PubMedPubMedCentralCrossRefGoogle Scholar
  125. 125.
    Zhao X, et al. PI3 K/Akt signaling pathway modulates influenza virus induced mouse alveolar macrophage polarization to M1/M2b. PLoS One. 2014;9(8):e104506.PubMedPubMedCentralCrossRefGoogle Scholar
  126. 126.
    Schneider C, et al. Alveolar macrophages are essential for protection from respiratory failure and associated morbidity following influenza virus infection. PLoS Pathog. 2014;10(4):e1004053.PubMedPubMedCentralCrossRefGoogle Scholar
  127. 127.
    Tumpey TM, et al. Pathogenicity of influenza viruses with genes from the 1918 pandemic virus: functional roles of alveolar macrophages and neutrophils in limiting virus replication and mortality in mice. J Virol. 2005;79(23):14933–44.PubMedPubMedCentralCrossRefGoogle Scholar
  128. 128.
    Hogner K, et al. Macrophage-expressed IFN-beta contributes to apoptotic alveolar epithelial cell injury in severe influenza virus pneumonia. PLoS Pathog. 2013;9(2):e1003188.PubMedPubMedCentralCrossRefGoogle Scholar
  129. 129.
    Hashimoto Y, et al. Evidence for phagocytosis of influenza virus-infected, apoptotic cells by neutrophils and macrophages in mice. J Immunol. 2007;178(4):2448–57.PubMedCrossRefGoogle Scholar
  130. 130.
    Brandes M, et al. A systems analysis identifies a feedforward inflammatory circuit leading to lethal influenza infection. Cell. 2013;154(1):197–212.PubMedPubMedCentralCrossRefGoogle Scholar
  131. 131.
    Zhang Z, et al. Infectious progeny of 2009 A (H1N1) influenza virus replicated in and released from human neutrophils. Sci Rep. 2015;5:17809.PubMedPubMedCentralCrossRefGoogle Scholar
  132. 132.
    Fujisawa H. Inhibitory role of neutrophils on influenza virus multiplication in the lungs of mice. Microbiol Immunol. 2001;45(10):679–88.PubMedCrossRefGoogle Scholar
  133. 133.
    Perrone LA, et al. H5N1 and 1918 pandemic influenza virus infection results in early and excessive infiltration of macrophages and neutrophils in the lungs of mice. PLoS Pathog. 2008;4(8):e1000115.PubMedPubMedCentralCrossRefGoogle Scholar
  134. 134.
    Fujisawa H. Neutrophils play an essential role in cooperation with antibody in both protection against and recovery from pulmonary infection with influenza virus in mice. J Virol. 2008;82(6):2772–83.PubMedPubMedCentralCrossRefGoogle Scholar
  135. 135.
    Daley JM, et al. Use of Ly6G-specific monoclonal antibody to deplete neutrophils in mice. J Leukoc Biol. 2008;83(1):64–70.PubMedCrossRefGoogle Scholar
  136. 136.
    Narasaraju T, et al. Excessive neutrophils and neutrophil extracellular traps contribute to acute lung injury of influenza pneumonitis. Am J Pathol. 2011;179(1):199–210.PubMedPubMedCentralCrossRefGoogle Scholar
  137. 137.
    Zhang RH, et al. N-acetyl-l-cystine (NAC) protects against H9N2 swine influenza virus-induced acute lung injury. Int Immunopharmacol. 2014;22(1):1–8.PubMedCrossRefGoogle Scholar
  138. 138.
    Vlahos R, et al. Inhibition of Nox2 oxidase activity ameliorates influenza A virus-induced lung inflammation. PLoS Pathog. 2011;7(2):e1001271.PubMedPubMedCentralCrossRefGoogle Scholar
  139. 139.
    Shi X, et al. PEGylated human catalase elicits potent therapeutic effects on H1N1 influenza-induced pneumonia in mice. Appl Microbiol Biotechnol. 2013;97(23):10025–33.PubMedCrossRefGoogle Scholar
  140. 140.
    Geiler J, et al. N-acetyl-l-cysteine (NAC) inhibits virus replication and expression of pro-inflammatory molecules in A549 cells infected with highly pathogenic H5N1 influenza A virus. Biochem Pharmacol. 2010;79(3):413–20.PubMedCrossRefGoogle Scholar
  141. 141.
    Hwang I, et al. Activation mechanisms of natural killer cells during influenza virus infection. PLoS One. 2012;7(12):e51858.PubMedPubMedCentralCrossRefGoogle Scholar
  142. 142.
    Gazit R, et al. Lethal influenza infection in the absence of the natural killer cell receptor gene Ncr1. Nat Immunol. 2006;7(5):517–23.PubMedCrossRefGoogle Scholar
  143. 143.
    Ishikawa H, et al. IFN-gamma production downstream of NKT cell activation in mice infected with influenza virus enhances the cytolytic activities of both NK cells and viral antigen-specific CD8+ T cells. Virology. 2010;407(2):325–32.PubMedCrossRefGoogle Scholar
  144. 144.
    Vanderven HA, et al. What lies beneath: antibody dependent natural killer cell activation by antibodies to internal influenza virus proteins. EBioMedicine. 2016;8:277–90.PubMedPubMedCentralCrossRefGoogle Scholar
  145. 145.
    Jansen CA, et al. Differential lung NK cell responses in avian influenza virus infected chickens correlate with pathogenicity. Sci Rep. 2013;3:2478.PubMedPubMedCentralCrossRefGoogle Scholar
  146. 146.
    Zhou G, Juang SW, Kane KP. NK cells exacerbate the pathology of influenza virus infection in mice. Eur J Immunol. 2013;43(4):929–38.PubMedCrossRefGoogle Scholar
  147. 147.
    Abdul-Careem MF, et al. Critical role of natural killer cells in lung immunopathology during influenza infection in mice. J Infect Dis. 2012;206(2):167–77.PubMedCrossRefGoogle Scholar
  148. 148.
    Chang YJ, et al. Innate lymphoid cells mediate influenza-induced airway hyper-reactivity independently of adaptive immunity. Nat Immunol. 2011;12(7):631–8.PubMedPubMedCentralCrossRefGoogle Scholar
  149. 149.
    Gorski SA, Hahn YS, Braciale TJ. Group 2 innate lymphoid cell production of IL-5 is regulated by NKT cells during influenza virus infection. PLoS Pathog. 2013;9(9):e1003615.PubMedPubMedCentralCrossRefGoogle Scholar
  150. 150.
    Monticelli LA, et al. Innate lymphoid cells promote lung-tissue homeostasis after infection with influenza virus. Nat Immunol. 2011;12(11):1045–54.PubMedPubMedCentralCrossRefGoogle Scholar
  151. 151.
    Shim DH, et al. Pandemic influenza virus, pH1N1, induces asthmatic symptoms via activation of innate lymphoid cells. Pediatr Allergy Immunol. 2015;26(8):780–8.PubMedCrossRefGoogle Scholar
  152. 152.
    Monticelli LA, Sonnenberg GF, Artis D. Innate lymphoid cells: critical regulators of allergic inflammation and tissue repair in the lung. Curr Opin Immunol. 2012;24(3):284–9.PubMedPubMedCentralCrossRefGoogle Scholar
  153. 153.
    Ho LP, et al. Activation of invariant NKT cells enhances the innate immune response and improves the disease course in influenza A virus infection. Eur J Immunol. 2008;38(7):1913–22.PubMedCrossRefGoogle Scholar
  154. 154.
    De Santo C, et al. Invariant NKT cells reduce the immunosuppressive activity of influenza A virus-induced myeloid-derived suppressor cells in mice and humans. J Clin Invest. 2008;118(12):4036–48.PubMedPubMedCentralCrossRefGoogle Scholar
  155. 155.
    Paget C, et al. Potential role of invariant NKT cells in the control of pulmonary inflammation and CD8+ T cell response during acute influenza A virus H3N2 pneumonia. J Immunol. 2011;186(10):5590–602.PubMedCrossRefGoogle Scholar
  156. 156.
    Barthelemy A, et al. Influenza A virus-induced release of interleukin-10 inhibits the anti-microbial activities of invariant natural killer T cells during invasive pneumococcal superinfection. Mucosal Immunol. 2016; doi: 10.1038/mi.2016.49.
  157. 157.
    Kreijtz JH, Fouchier RA, Rimmelzwaan GF. Immune responses to influenza virus infection. Virus Res. 2011;162(1–2):19–30.PubMedCrossRefGoogle Scholar
  158. 158.
    Hillaire ML, Rimmelzwaan GF, Kreijtz JH. Clearance of influenza virus infections by T cells: risk of collateral damage? Curr Opin Virol. 2013;3(4):430–7.PubMedCrossRefGoogle Scholar
  159. 159.
    McCormick S, et al. Control of pathogenic CD4 T cells and lethal immunopathology by signaling immunoadaptor DAP12 during influenza infection. J Immunol. 2011;187(8):4280–92.PubMedCrossRefGoogle Scholar
  160. 160.
    Xu L, et al. Cutting edge: pulmonary immunopathology mediated by antigen-specific expression of TNF-alpha by antiviral CD8+ T cells. J Immunol. 2004;173(2):721–5.PubMedCrossRefGoogle Scholar
  161. 161.
    Duan S, Thomas PG. Balancing immune protection and immune pathology by CD8(+) T-cell responses to influenza infection. Front Immunol. 2016;7:25.PubMedPubMedCentralCrossRefGoogle Scholar
  162. 162.
    Enelow RI, et al. Structural and functional consequences of alveolar cell recognition by CD8(+) T lymphocytes in experimental lung disease. J Clin Invest. 1998;102(9):1653–61.PubMedPubMedCentralCrossRefGoogle Scholar
  163. 163.
    Betts RJ, et al. Influenza A virus infection results in a robust, antigen-responsive, and widely disseminated Foxp3+ regulatory T cell response. J Virol. 2012;86(5):2817–25.PubMedPubMedCentralCrossRefGoogle Scholar
  164. 164.
    Zou Q, et al. CD8+ Treg cells suppress CD8+ T cell-responses by IL-10-dependent mechanism during H5N1 influenza virus infection. Eur J Immunol. 2014;44(1):103–14.PubMedCrossRefGoogle Scholar
  165. 165.
    Simonsen L. The global impact of influenza on morbidity and mortality. Vaccine. 1999;17(Suppl 1):S3–10.PubMedCrossRefGoogle Scholar
  166. 166.
    Morens DM, Taubenberger JK, Fauci AS. Predominant role of bacterial pneumonia as a cause of death in pandemic influenza: implications for pandemic influenza preparedness. J Infect Dis. 2008;198(7):962–70.PubMedPubMedCentralCrossRefGoogle Scholar
  167. 167.
    McCullers JA. Do specific virus-bacteria pairings drive clinical outcomes of pneumonia? Clin Microbiol Infect. 2013;19(2):113–8.PubMedCrossRefGoogle Scholar
  168. 168.
    Ramphal R, et al. Adherence of Pseudomonas aeruginosa to tracheal cells injured by influenza infection or by endotracheal intubation. Infect Immun. 1980;27(2):614–9.PubMedPubMedCentralGoogle Scholar
  169. 169.
    McCullers JA. The co-pathogenesis of influenza viruses with bacteria in the lung. Nat Rev Microbiol. 2014;12(4):252–62.PubMedCrossRefGoogle Scholar
  170. 170.
    McAuley JL, et al. Expression of the 1918 influenza A virus PB1-F2 enhances the pathogenesis of viral and secondary bacterial pneumonia. Cell Host Microbe. 2007;2(4):240–9.PubMedPubMedCentralCrossRefGoogle Scholar
  171. 171.
    McCullers JA, Rehg JE. Lethal synergism between influenza virus and Streptococcus pneumoniae: characterization of a mouse model and the role of platelet-activating factor receptor. J Infect Dis. 2002;186(3):341–50.PubMedCrossRefGoogle Scholar
  172. 172.
    McCullers JA. Insights into the interaction between influenza virus and pneumococcus. Clin Microbiol Rev. 2006;19(3):571–82.PubMedPubMedCentralCrossRefGoogle Scholar
  173. 173.
    Siegel SJ, Roche AM, Weiser JN. Influenza promotes pneumococcal growth during coinfection by providing host sialylated substrates as a nutrient source. Cell Host Microbe. 2014;16(1):55–67.PubMedPubMedCentralCrossRefGoogle Scholar
  174. 174.
    Pittet LA, et al. Influenza virus infection decreases tracheal mucociliary velocity and clearance of Streptococcus pneumoniae. Am J Respir Cell Mol Biol. 2010;42(4):450–60.PubMedCrossRefGoogle Scholar
  175. 175.
    Kudva A, et al. Influenza A inhibits Th17-mediated host defense against bacterial pneumonia in mice. J Immunol. 2011;186(3):1666–74.PubMedCrossRefGoogle Scholar
  176. 176.
    Sun K, Metzger DW. Inhibition of pulmonary antibacterial defense by interferon-gamma during recovery from influenza infection. Nat Med. 2008;14(5):558–64.PubMedCrossRefGoogle Scholar
  177. 177.
    McNamee LA, Harmsen AG. Both influenza-induced neutrophil dysfunction and neutrophil-independent mechanisms contribute to increased susceptibility to a secondary Streptococcus pneumoniae infection. Infect Immun. 2006;74(12):6707–21.PubMedPubMedCentralCrossRefGoogle Scholar
  178. 178.
    van der Sluijs KF, et al. IL-10 is an important mediator of the enhanced susceptibility to pneumococcal pneumonia after influenza infection. J Immunol. 2004;172(12):7603–9.PubMedCrossRefGoogle Scholar
  179. 179.
    Kosai K, et al. Increase of apoptosis in a murine model for severe pneumococcal pneumonia during influenza A virus infection. Jpn J Infect Dis. 2011;64(6):451–7.PubMedGoogle Scholar
  180. 180.
    Wilson HE, et al. Reactions of Monkeys to experimental mixed influenza and Streptococcus Infections: an analysis of the relative roles of humoral and cellular immunity, with the description of an intercurrent nephritic syndrome. J Exp Med. 1947;85(2):199–215.PubMedPubMedCentralCrossRefGoogle Scholar
  181. 181.
    Speshock JL, et al. Filamentous influenza A virus infection predisposes mice to fatal septicemia following superinfection with Streptococcus pneumoniae serotype 3. Infect Immun. 2007;75(6):3102–11.PubMedPubMedCentralCrossRefGoogle Scholar
  182. 182.
    Smith MW, et al. Induction of pro- and anti-inflammatory molecules in a mouse model of pneumococcal pneumonia after influenza. Comp Med. 2007;57(1):82–9.PubMedPubMedCentralGoogle Scholar
  183. 183.
    Wu Y, et al. Successive influenza virus infection and Streptococcus pneumoniae stimulation alter human dendritic cell function. BMC Infect Dis. 2011;11:201.PubMedPubMedCentralCrossRefGoogle Scholar
  184. 184.
    Kuri T, et al. Influenza A virus-mediated priming enhances cytokine secretion by human dendritic cells infected with Streptococcus pneumoniae. Cell Microbiol. 2013;15(8):1385–400.PubMedPubMedCentralCrossRefGoogle Scholar
  185. 185.
    Centers for Disease C. and Prevention. Bacterial coinfections in lung tissue specimens from fatal cases of 2009 pandemic influenza A (H1N1)—United States, May–August 2009. MMWR Morb Mortal Wkly Rep. 2009;58(38):1071–4.Google Scholar
  186. 186.
    Robinson KM, et al. Influenza A virus exacerbates Staphylococcus aureus pneumonia in mice by attenuating antimicrobial peptide production. J Infect Dis. 2014;209(6):865–75.PubMedCrossRefGoogle Scholar
  187. 187.
    Warshauer D, et al. Effect of influenza viral infection on the ingestion and killing of bacteria by alveolar macrophages. Am Rev Respir Dis. 1977;115(2):269–77.PubMedGoogle Scholar
  188. 188.
    Martin RR, et al. Effects of infection with influenza virus on the function of polymorphonuclear leukocytes. J Infect Dis. 1981;144(3):279–80.PubMedCrossRefGoogle Scholar
  189. 189.
    Didierlaurent A, et al. Sustained desensitization to bacterial Toll-like receptor ligands after resolution of respiratory influenza infection. J Exp Med. 2008;205(2):323–9.PubMedPubMedCentralCrossRefGoogle Scholar
  190. 190.
    Goulding J, et al. Lowering the threshold of lung innate immune cell activation alters susceptibility to secondary bacterial superinfection. J Infect Dis. 2011;204(7):1086–94.PubMedPubMedCentralCrossRefGoogle Scholar
  191. 191.
    Kash JC, et al. Lethal synergism of 2009 pandemic H1N1 influenza virus and Streptococcus pneumoniae coinfection is associated with loss of murine lung repair responses. MBio. 2011; 2(5).Google Scholar
  192. 192.
    Jamieson AM, et al. Role of tissue protection in lethal respiratory viral-bacterial coinfection. Science. 2013;340(6137):1230–4.PubMedPubMedCentralCrossRefGoogle Scholar
  193. 193.
    Fedson DS. Confronting the next influenza pandemic with anti-inflammatory and immunomodulatory agents: why they are needed and how they might work. Influenza Other Respir Viruses. 2009;3(4):129–42.PubMedPubMedCentralCrossRefGoogle Scholar
  194. 194.
    Garcia CC, et al. The development of anti-inflammatory drugs for infectious diseases. Discov Med. 2010;10(55):479–88.PubMedGoogle Scholar
  195. 195.
    Han K, et al. Early use of glucocorticoids was a risk factor for critical disease and death from pH1N1 infection. Clin Infect Dis. 2011;53(4):326–33.PubMedCrossRefGoogle Scholar
  196. 196.
    Kim SH, et al. Corticosteroid treatment in critically ill patients with pandemic influenza A/H1N1 2009 infection: analytic strategy using propensity scores. Am J Respir Crit Care Med. 2011;183(9):1207–14.PubMedCrossRefGoogle Scholar
  197. 197.
    Kudo K, et al. Systemic corticosteroids and early administration of antiviral agents for pneumonia with acute wheezing due to influenza A(H1N1)pdm09 in Japan. PLoS ONE. 2012;7(2):e32280.PubMedPubMedCentralCrossRefGoogle Scholar
  198. 198.
    Abeles AM, Pillinger MH. Statins as antiinflammatory and immunomodulatory agents: a future in rheumatologic therapy? Arthritis Rheum. 2006;54(2):393–407.PubMedCrossRefGoogle Scholar
  199. 199.
    Kwong JC, Li P, Redelmeier DA. Influenza morbidity and mortality in elderly patients receiving statins: a cohort study. PLoS One. 2009;4(11):e8087.PubMedPubMedCentralCrossRefGoogle Scholar
  200. 200.
    Frost FJ, et al. Influenza and COPD mortality protection as pleiotropic, dose-dependent effects of statins. Chest. 2007;131(4):1006–12.PubMedCrossRefGoogle Scholar
  201. 201.
    Vandermeer ML, et al. Association between use of statins and mortality among patients hospitalized with laboratory-confirmed influenza virus infections: a multistate study. J Infect Dis. 2012;205(1):13–9.PubMedCrossRefGoogle Scholar
  202. 202.
    Brett SJ, et al. Pre-admission statin use and in-hospital severity of 2009 pandemic influenza A(H1N1) disease. PLoS One. 2011;6(4):e18120.PubMedPubMedCentralCrossRefGoogle Scholar
  203. 203.
    Kumaki Y, Morrey JD, Barnard DL. Effect of statin treatments on highly pathogenic avian influenza H5N1, seasonal and H1N1pdm09 virus infections in BALB/c mice. Future Virol. 2012;7(8):801–18.PubMedPubMedCentralCrossRefGoogle Scholar
  204. 204.
    Liu Z, et al. Evaluation of the efficacy and safety of a statin/caffeine combination against H5N1, H3N2 and H1N1 virus infection in BALB/c mice. Eur J Pharm Sci. 2009;38(3):215–23.PubMedCrossRefGoogle Scholar
  205. 205.
    Mehrbod P, et al. Simvastatin modulates cellular components in influenza A virus-infected cells. Int J Mol Med. 2014;34(1):61–73.PubMedPubMedCentralGoogle Scholar
  206. 206.
    Rocca B, FitzGerald GA. Cyclooxygenases and prostaglandins: shaping up the immune response. Int Immunopharmacol. 2002;2(5):603–30.PubMedCrossRefGoogle Scholar
  207. 207.
    Darwish I, Mubareka S, Liles WC. Immunomodulatory therapy for severe influenza. Expert Rev Anti Infect Ther. 2011;9(7):807–22.PubMedCrossRefGoogle Scholar
  208. 208.
    Lee SM, et al. Hyperinduction of cyclooxygenase-2-mediated proinflammatory cascade: a mechanism for the pathogenesis of avian influenza H5N1 infection. J Infect Dis. 2008;198(4):525–35.PubMedCrossRefGoogle Scholar
  209. 209.
    Zheng BJ, et al. Delayed antiviral plus immunomodulator treatment still reduces mortality in mice infected by high inoculum of influenza A/H5N1 virus. Proc Natl Acad Sci USA. 2008;105(23):8091–6.PubMedPubMedCentralCrossRefGoogle Scholar
  210. 210.
    Lauder SN, et al. Paracetamol reduces influenza-induced immunopathology in a mouse model of infection without compromising virus clearance or the generation of protective immunity. Thorax. 2011;66(5):368–74.PubMedPubMedCentralCrossRefGoogle Scholar
  211. 211.
    Carey MA, et al. Contrasting effects of cyclooxygenase-1 (COX-1) and COX-2 deficiency on the host response to influenza A viral infection. J Immunol. 2005;175(10):6878–84.PubMedCrossRefGoogle Scholar
  212. 212.
    Bassaganya-Riera J, et al. PPAR-gamma activation as an anti-inflammatory therapy for respiratory virus infections. Viral Immunol. 2010;23(4):343–52.PubMedCrossRefGoogle Scholar
  213. 213.
    Budd A, et al. Increased survival after gemfibrozil treatment of severe mouse influenza. Antimicrob Agents Chemother. 2007;51(8):2965–8.PubMedPubMedCentralCrossRefGoogle Scholar
  214. 214.
    Moseley CE, Webster RG, Aldridge JR. Peroxisome proliferator-activated receptor and AMP-activated protein kinase agonists protect against lethal influenza virus challenge in mice. Influenza Other Respir Viruses. 2010;4(5):307–11.PubMedPubMedCentralCrossRefGoogle Scholar
  215. 215.
    Russell CD, Schwarze J. The role of pro-resolution lipid mediators in infectious disease. Immunology. 2014;141(2):166–73.PubMedPubMedCentralCrossRefGoogle Scholar
  216. 216.
    Morita M, et al. The lipid mediator protectin D1 inhibits influenza virus replication and improves severe influenza. Cell. 2013;153(1):112–25.PubMedCrossRefGoogle Scholar
  217. 217.
    Winter C, et al. Lung-specific overexpression of CC chemokine ligand (CCL) 2 enhances the host defense to Streptococcus pneumoniae infection in mice: role of the CCL2-CCR2 axis. J Immunol. 2007;178(9):5828–38.PubMedCrossRefGoogle Scholar
  218. 218.
    Lin KL, et al. CCR2-antagonist prophylaxis reduces pulmonary immune pathology and markedly improves survival during influenza infection. J Immunol. 2011;186(1):508–15.PubMedCrossRefGoogle Scholar
  219. 219.
    Iwasaki A, Medzhitov R. A new shield for a cytokine storm. Cell. 2011;146(6):861–2.PubMedPubMedCentralCrossRefGoogle Scholar
  220. 220.
    Marsolais D, et al. A critical role for the sphingosine analog AAL-R in dampening the cytokine response during influenza virus infection. Proc Natl Acad Sci USA. 2009;106(5):1560–5.PubMedPubMedCentralCrossRefGoogle Scholar
  221. 221.
    Teijaro JR, et al. Endothelial cells are central orchestrators of cytokine amplification during influenza virus infection. Cell. 2011;146(6):980–91.PubMedPubMedCentralCrossRefGoogle Scholar
  222. 222.
    Sato K, et al. Therapeutic effect of erythromycin on influenza virus-induced lung injury in mice. Am J Respir Crit Care Med. 1998;157(3 Pt 1):853–7.PubMedCrossRefGoogle Scholar
  223. 223.
    Karlstrom A, et al. Treatment with protein synthesis inhibitors improves outcomes of secondary bacterial pneumonia after influenza. J Infect Dis. 2009;199(3):311–9.PubMedPubMedCentralCrossRefGoogle Scholar
  224. 224.
    Higashi F, et al. Additional treatment with clarithromycin reduces fever duration in patients with influenza. Respir Investig. 2014;52(5):302–9.PubMedCrossRefGoogle Scholar
  225. 225.
    Planz O. Development of cellular signaling pathway inhibitors as new antivirals against influenza. Antiviral Res. 2013;98(3):457–68.PubMedCrossRefGoogle Scholar
  226. 226.
    Aeffner F, Woods PS, Davis IC. Activation of A1-adenosine receptors promotes leukocyte recruitment to the lung and attenuates acute lung injury in mice infected with influenza A/WSN/33 (H1N1) virus. J Virol. 2014;88(17):10214–27.PubMedPubMedCentralCrossRefGoogle Scholar
  227. 227.
    Sharma G, et al. Reduction of influenza virus-induced lung inflammation and mortality in animals treated with a phosophodisestrase-4 inhibitor and a selective serotonin reuptake inhibitor. Emerging Microbes Infect 2013;2,e54; doi: 10.1038/emi.2013.52.

Copyright information

© Springer International Publishing 2016

Authors and Affiliations

  • Luciana P. Tavares
    • 1
  • Mauro M. Teixeira
    • 1
  • Cristiana C. Garcia
    • 1
    • 2
  1. 1.Laboratório de Imunofarmacologia, Departamento de Bioquímica e ImunologiaICB Universidade Federal de Minas GeraisBelo HorizonteBrazil
  2. 2.Laboratório de Vírus Respiratórios e do SarampoInstituto Oswaldo Cruz, FiocruzRio de JaneiroBrazil

Personalised recommendations