Inflammation Research

, Volume 66, Issue 1, pp 1–12 | Cite as

Progress does not just come in giant leaps: adapting techniques for the study of inflammation to novel applications

IAIS Lifetime Achievement Award



Discussion of the relevance of suitable experimental models for the effective translation of drug effects to clinical inflammatory diseases has a long history. Much emphasis is placed these days on genetically transformed mice, which may have developmental drawbacks. But are established models redundant?


Drawn from personal experience, examples are provided of the success of tinkering with technology in the context of inflammation. These include the use of specific dietary deficiency conditions, the development of new applications for established drugs and the introduction of a variety of readouts to assess outcome in studies on established disease models. Such approaches have been used to demonstrate inflammation-modulating effects of prostaglandin E, in the development of ebselen, for the introduction of immunomodulatory macrolide drugs and in new approaches to the therapy of multiple sclerosis.


Fine tuning of experimental approaches and evaluation technologies can often still provide innovative, clinically relevant insights into the potential beneficial effects of drugs and pharmacological agents. 


Models of inflammation Drug effects Ebselen Prostaglandin E Azithromycin EAE 



Whatever research project is being pursued, people with high quality technical skills are crucial. I have been fortunate to work in research teams with many such people, some of whom I have cited in this article and for whose collaboration and friendship I am most grateful. Perhaps one of my main contributions to the teams was my ability to give clear presentations and to write in my native language, having spent most of my research career in non-English-speaking countries! I also wish to thank various members of committees of the International Association of Inflammation Societies (IAIS) and the Inflammation Research Association (IRA) in the US with whom I have worked over the years and developed good friendships and the latest IAIS committee for the Lifetime Achievement Award. I am delighted to share the award with Ian Ahnfelt-Rønne, a long-standing colleague and friend, mindful of the many years we shared editing Inflammation Research and for the productive co-operation with Detlef-Klueber at Springer. I also thank the LOEWE Research Center for Translational Medicine and Pharmacology of the State of Hesse for financial support of the work in Frankfurt.


  1. 1.
    Vane JR. The release and fate of vaso-active hormones in the circulation. Br J Pharmacol. 1969;35:209–42.CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Ferreira SH, De Souza Costa F. A laminar flow superfusion technique with much increased sensitivity for the detection of smooth muscle-stimulating substances. Eur J Pharmacol. 1976;39:379–81.CrossRefPubMedGoogle Scholar
  3. 3.
    Bult H, Parnham MJ, Bonta IL. Bioassay by cascade superfusion using a highly sensitive laminar flow technique. J Pharm Pharmacol. 1977;29:369–70.CrossRefPubMedGoogle Scholar
  4. 4.
    Adolfs MJ, Parnham MJ, Vincent JE, Zijlstra FJ. Detection of small amounts of prostaglandin (PG)-like material and rabbit aorta contracting substance (RCS) released into the blood of the rat [proceedings]. Br J Pharmacol. 1977;60:317P.PubMedPubMedCentralGoogle Scholar
  5. 5.
    Parnham MJ. Determinants of inflammation test selection: in vitro or in vivo? Agents Actions. 1986;17:327–8.CrossRefPubMedGoogle Scholar
  6. 6.
    Deltcheva E, Chylinski K, Sharma CM, Gonzales K, Chao Y, Pirzada ZA, et al. CRISPR RNA maturation by trans-encoded small RNA and host factor RNase III. Nature. 2011;471:602–7.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Hayashi S, McMahon AP. Efficient recombination in diverse tissues by a tamoxifen-inducible form of Cre: a tool for temporally regulated gene activation/inactivation in the mouse. Dev Biol. 2002;244:305–18.CrossRefPubMedGoogle Scholar
  8. 8.
    Aspinall RL, Cammarat PS. Effect of prostaglandin-E2 on adjuvant arthritis. Nature. 1969;224:1320.CrossRefPubMedGoogle Scholar
  9. 9.
    Zurier RB, Quagliat F. Effect of prostaglandin-E1 on adjuvant arthritis. Nature. 1971;234:304.CrossRefPubMedGoogle Scholar
  10. 10.
    Zurier RB, Ballas M. Prostaglandin E 1 (PGE 1) suppression of adjuvant arthritis histopathology. Arthritis Rheum. 1973;16:251–7.CrossRefPubMedGoogle Scholar
  11. 11.
    Zor U, Kaneko T, Schneider HP, McCann SM, Lowe IP, Bloom G, et al. Stimulation of anterior pituitary adenyl cyclase activity and adenosine 3′:5′-cyclic phosphate by hypothalamic extract and prostaglandin E1. Proc Natl Acad Sci USA. 1969;63:918–25.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Bourne HR, Lehrer RI, Cline MJ, Melmon KL. Cyclic 3′,5′-adenosine monophosphate in the human lukocyte: synthesis, degradation, andeffects n neutrophil candidacidal activity. J Clin Investig. 1971;50:920–9.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Bonta IL, Parnham MJ, Vanvliet L. Combination of theophylline and prostaglandin-E1 as inhibitors of adjuvant-induced arthritis syndrome of rats. Ann Rheum Dis. 1978;37:212–7.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Parnham MJ, Bonta IL, Adolfs MJP. Cyclic-Amp and prostaglandin-e in perfusates of rat hind paws during development of adjuvant arthritis. Ann Rheum Dis. 1978;37:218–24.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Meier R, Schuler W, Desaulles P. Zur Frage Des Mechanismus Der Hemmung Des Bindegewebswachstums Durch Cortisone. Experientia. 1950;6:469–71.CrossRefPubMedGoogle Scholar
  16. 16.
    Mohr W, Hummler N, Pelster B, Wessinghage D. Proliferation of pannus tissue-cells in rheumatoid-arthritis. Rheumatol Int. 1986;6:127–32.CrossRefPubMedGoogle Scholar
  17. 17.
    Di Rosa M. Biological properties of carrageenan. J Pharm Pharmacol. 1972;24:89–102.CrossRefPubMedGoogle Scholar
  18. 18.
    Ohuchi K, Levine L, Sato H, Tsurufuji S. Prostaglandins E2, F2 alpha, 6-keto-F1 alpha and thromboxane B2 levels in carrageenin-induced inflammatory exudates in the rat air-pouch granuloma. Prostaglandins Med. 1979;2:293–7.CrossRefPubMedGoogle Scholar
  19. 19.
    Parnham MJ. The inflammatory response to lymph node cells from adjuvant-diseased rats: late changes in local and systemic leucocyte counts in the Wistar strain. J Pathol. 1980;132:11–21.CrossRefPubMedGoogle Scholar
  20. 20.
    Parnham MJ, Schoester GA. The inflammatory response to lymph node cells from adjuvant-diseased rats. Relative contributions of donor and recipient cell populations. J Pathol. 1980;130:255–63.CrossRefPubMedGoogle Scholar
  21. 21.
    Bonta IL, Adolfs MJP, Parnham MJ. Cannulated sponge implants in rats for the study of time-dependent pharmacological influences on inflammatory granulomata. J Pharmacol Method. 1979;2:1–11.CrossRefGoogle Scholar
  22. 22.
    Parnham MJ, Bonta IL, Adolfs MJ, Bragt P. A polyether sponge constituent which is antioxidant, anti-inflammatory and increases prostaglandin concentrations at the inflamed site. Agents Actions. 1977;7:539–44.CrossRefPubMedGoogle Scholar
  23. 23.
    Hansen AE, Burr GO. Essential fatty acids and human nutrition. J Am Med Assoc. 1946;132:855–9.CrossRefPubMedGoogle Scholar
  24. 24.
    Burr GO. The essential fatty acids 50 years ago. Prog Lipid Res. 1981;20:xxvii–xxix.CrossRefPubMedGoogle Scholar
  25. 25.
    Bergstrom S, Carlson LA, Weeks JR. The prostaglandins: a family of biologically active lipids. Pharmacol Rev. 1968;20:1–48.PubMedGoogle Scholar
  26. 26.
    Bonta IL, Chrispijn H, Noordhoek J, Vincent JE. Reduction of prostaglandin-phase in hind-paw inflammation and partial failure of indomethacin to exert anti-inflammatory effect in rats on essential fatty acid deficient diet. Prostaglandins. 1974;5:495–503.CrossRefPubMedGoogle Scholar
  27. 27.
    Vincent JE, Melai A, Bonta IL. Comparison of the effects of prostaglandin E1 on platelet aggregation in normal and essential fatty acid deficient rats. Prostaglandins. 1974;5:369–73.CrossRefPubMedGoogle Scholar
  28. 28.
    Bonta IL. Essential fatty acid deficient animals as tools for the study of some cardiovascular and related functions. Acta Cardiol Suppl. 1979:62–6.Google Scholar
  29. 29.
    Parnham MJ, Vincent JE, Zijlstra FJ, Bonta IL. The use of essential fatty acid deficient rats to study pathophysiological roles of prostaglandins. Comparison of prostaglandin production with some parameters of deficiency. Lipids. 1979;14:407–12.CrossRefPubMedGoogle Scholar
  30. 30.
    Bonta IL, Parnham MJ, Adolfs MJ. Reduced exudation and increased tissue proliferation during chronic inflammation in rats deprived of endogenous prostaglandin precursors. Prostaglandins. 1977;14:295–307.CrossRefPubMedGoogle Scholar
  31. 31.
    Parnham MJ, Shoshan S, Bonta IL, Neiman-Wollner S. Increased collagen metabolism in granulomata induced in rats deficient in endogenous prostaglandin precursors. Prostaglandins. 1977;14:709–14.CrossRefPubMedGoogle Scholar
  32. 32.
    Bonta IL, Parnham MJ. Time-dependent stimulatory and inhibitory effects of prostaglandin E1 on exudative and tissue components of granulomatous inflammation in rats. Br J Pharmacol. 1979;65:465–72.CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Bonta IL, Parnham MJ. Essential fatty-acids or prostaglandins—therapeutic modulators of chronic inflammation. Trends Pharmacol Sci. 1980;1:347–9.CrossRefGoogle Scholar
  34. 34.
    Zhang YY, Desai A, Yang SY, Bae KB, Antczak MI, Fink SP, et al. Inhibition of the prostaglandin-degrading enzyme 15-PGDH potentiates tissue regeneration. Science. 2015;348:1223.Google Scholar
  35. 35.
    Serhan CN, Chiang N, Dalli J. The resolution code of acute inflammation: novel pro-resolving lipid mediators in resolution. Semin Immunol. 2015;27:200–15.CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Newson J, Stables M, Karra E, Arce-Vargas F, Quezada S, Motwani M, et al. Resolution of acute inflammation bridges the gap between innate and adaptive immunity. Blood. 2014;124:1748–64.CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Jacob RA. Three eras of vitamin C discovery. Sub Cell Biochem. 1996;25:1–16.CrossRefGoogle Scholar
  38. 38.
    Zhao ZJ, Li Q, Yang PZ, Wang H, Kong LC, Wang LH, et al. Selenium: a protective factor for Kaschin-Beck disease in Qing-Tibet Plateau. Biol Trace Elem Res. 2013;153:1–4.CrossRefPubMedGoogle Scholar
  39. 39.
    Flohe L, Gunzler WA, Schock HH. Glutathione peroxidase: a selenoenzyme. FEBS Lett. 1973;32:132–4.CrossRefPubMedGoogle Scholar
  40. 40.
    Cadenas E, Wefers H, Muller A, Brigelius R, Sies H. Active oxygen metabolites and their action in the hepatocyte. Studies on chemiluminescence responses and alkane production. Agents Actions Suppl. 1982;11:203–16.PubMedGoogle Scholar
  41. 41.
    Parnham MJ, Winkelmann J, Leyck S. Macrophage, lymphocyte and chronic inflammatory responses in selenium deficient rodents. Association with decreased glutathione peroxidase activity. Int J Immunopharmacol. 1983;5:455–61.CrossRefPubMedGoogle Scholar
  42. 42.
    Parnham MJ, Kindt S. A novel biologically active seleno-organic compound—III. Effects of PZ 51 (Ebselen) on glutathione peroxidase and secretory activities of mouse macrophages. Biochem Pharmacol. 1984;33:3247–50.CrossRefPubMedGoogle Scholar
  43. 43.
    Muller A, Cadenas E, Graf P, Sies H. A novel biologically active seleno-organic compound—I. Glutathione peroxidase-like activity in vitro and antioxidant capacity of PZ 51 (Ebselen). Biochem Pharmacol. 1984;33:3235–9.CrossRefPubMedGoogle Scholar
  44. 44.
    Wendel A, Fausel M, Safayhi H, Tiegs G, Otter R. A novel biologically active seleno-organic compound—II. Activity of PZ 51 in relation to glutathione peroxidase. Biochem Pharmacol. 1984;33:3241–5.CrossRefPubMedGoogle Scholar
  45. 45.
    Parnham MJ. Biological activities and clinical potential of Ebselen. Adv Exp Med Biol. 1990;264:193–7.CrossRefPubMedGoogle Scholar
  46. 46.
    Parnham MJ, Leyck S, Graf E, Dowling EJ, Blake DR. The pharmacology of ebselen. Agents Actions. 1991;32:4–9.CrossRefPubMedGoogle Scholar
  47. 47.
    Leyck S, Parnham MJ. Acute antiinflammatory and gastric effects of the seleno-organic compound ebselen. Agents Actions. 1990;30:426–31.CrossRefPubMedGoogle Scholar
  48. 48.
    Courtenay JS, Dallman MJ, Dayan AD, Martin A, Mosedale B. Immunisation against heterologous type II collagen induces arthritis in mice. Nature. 1980;283:666–8.CrossRefPubMedGoogle Scholar
  49. 49.
    Koga T, Kakimoto K, Hirofuji T, Kotani S, Ohkuni H, Watanabe K, et al. Acute joint inflammation in mice after systemic injection of the cell wall, its peptidoglycan, and chemically defined peptidoglycan subunits from various bacteria. Infect Immun. 1985;50:27–34.PubMedPubMedCentralGoogle Scholar
  50. 50.
    van den Broek MF, van Bruggen MC, van de Putte LB, van den Berg WB. T cell responses to streptococcal antigens in rats: relation to susceptibility to streptococcal cell wall-induced arthritis. Cell Immunol. 1988;116:216–29.CrossRefPubMedGoogle Scholar
  51. 51.
    van den Broek MF, van den Berg WB, van de Putte LB, Severijnen AJ. Streptococcal cell wall-induced arthritis and flare-up reaction in mice induced by homologous or heterologous cell walls. Am J Pathol. 1988;133:139–49.PubMedPubMedCentralGoogle Scholar
  52. 52.
    van den Broek MF, van den Berg WB, Arntz OJ, van de Putte LB. Reaction of bacterium-primed murine T cells to cartilage components: a clue for the pathogenesis of arthritis? Clin Exp Immunol. 1988;72:9–14.PubMedPubMedCentralGoogle Scholar
  53. 53.
    Schalkwijk J, van den Berg WB, van de Putte LB, Joosten LA. An experimental model for hydrogen peroxide-induced tissue damage. Effects of a single inflammatory mediator on (peri)articular tissues. Arthritis Rheum. 1986;29:532–8.CrossRefPubMedGoogle Scholar
  54. 54.
    Parnham MJ, Sies H. The early research and development of ebselen. Biochem Pharmacol. 2013;86:1248–53.CrossRefPubMedGoogle Scholar
  55. 55.
    Raju TNK. The Nobel chronicles. Lancet. 2000;356:81.CrossRefPubMedGoogle Scholar
  56. 56.
    Novac N. Challenges and opportunities of drug repositioning. Trends Pharmacol Sci. 2013;34:267–72.CrossRefPubMedGoogle Scholar
  57. 57.
    Singh N, Halliday AC, Thomas JM, Kuznetsova OV, Baldwin R, Woon EC, et al. A safe lithium mimetic for bipolar disorder. Nat Commun. 2013;4:1332.CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Mason RP, Casu M, Butler N, Breda C, Campesan S, Clapp J, et al. Glutathione peroxidase activity is neuroprotective in models of Huntington’s disease. Nat Genet. 2013;45:1249–54.CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Carbon C. Pharmacodynamics of macrolides, azalides, and streptogramins: effect on extracellular pathogens. Clin Infect Dis. 1998;27:28–32.CrossRefPubMedGoogle Scholar
  60. 60.
    Alihodzic S, Fajdetic A, Kobrehel G, Lazarevski G, Mutak S, Pavlovic D, et al. Synthesis and antibacterial activity of isomeric 15-membered azalides. J Antibiot. 2006;59:753–69.CrossRefPubMedGoogle Scholar
  61. 61.
    Fajdetic A, Vinter A, Paljetak HC, Padovan J, Jakopovic IP, Kapic S, et al. Synthesis, activity and pharmacokinetics of novel antibacterial 15-membered ring macrolones. Eur J Med Chem. 2011;46:3388–97.CrossRefPubMedGoogle Scholar
  62. 62.
    Tomaskovic L, Komac M, Makaruha Stegic O, Munic V, Ralic J, Stanic B, et al. Macrolactonolides: a novel class of anti-inflammatory compounds. Bioorg Med Chem. 2013;21:321–32.CrossRefPubMedGoogle Scholar
  63. 63.
    Culic O, Erakovic V, Parnham MJ. Anti-inflammatory effects of macrolide antibiotics. Eur J Pharmacol. 2001;429:209–29.CrossRefPubMedGoogle Scholar
  64. 64.
    Culic O, Erakovic V, Cepelak I, Barisic K, Brajsa K, Ferencic Z, et al. Azithromycin modulates neutrophil function and circulating inflammatory mediators in healthy human subjects. Eur J Pharmacol. 2002;450:277–89.CrossRefPubMedGoogle Scholar
  65. 65.
    Parnham MJ, Erakovic Haber V, Giamarellos-Bourboulis EJ, Perletti G, Verleden GM, Vos R. Azithromycin: mechanisms of action and their relevance for clinical applications. Pharmacol Therap. 2014;143:225–45.CrossRefGoogle Scholar
  66. 66.
    Parnham MJ, Culic O, Erakovic V, Munic V, Popovic-Grle S, Barisic K, et al. Modulation of neutrophil and inflammation markers in chronic obstructive pulmonary disease by short-term azithromycin treatment. Eur J Pharmacol. 2005;517:132–43.CrossRefPubMedGoogle Scholar
  67. 67.
    Ivetic Tkalcevic V, Bosnjak B, Hrvacic B, Bosnar M, Marjanovic N, Ferencic Z, et al. Anti-inflammatory activity of azithromycin attenuates the effects of lipopolysaccharide administration in mice. Eur J Pharmacol. 2006;539:131–8.CrossRefPubMedGoogle Scholar
  68. 68.
    Bosnar M, Bosnjak B, Cuzic S, Hrvacic B, Marjanovic N, Glojnaric I, et al. Azithromycin and clarithromycin inhibit lipopolysaccharide-induced murine pulmonary neutrophilia mainly through effects on macrophage-derived granulocyte-macrophage colony-stimulating factor and interleukin-1beta. J Pharmacol Exp Therap. 2009;331:104–13.CrossRefGoogle Scholar
  69. 69.
    Hodge S, Hodge G, Brozyna S, Jersmann H, Holmes M, Reynolds PN. Azithromycin increases phagocytosis of apoptotic bronchial epithelial cells by alveolar macrophages. Eur Respir J. 2006;28:486–95.CrossRefPubMedGoogle Scholar
  70. 70.
    Feola DJ, Garvy BA, Cory TJ, Birket SE, Hoy H, Hayes D Jr, et al. Azithromycin alters macrophage phenotype and pulmonary compartmentalization during lung infection with Pseudomonas. Antimicrob Agents Chemother. 2010;54:2437–47.CrossRefPubMedPubMedCentralGoogle Scholar
  71. 71.
    Bosnar M, Cuzic S, Bosnjak B, Nujic K, Ergovic G, Marjanovic N, et al. Azithromycin inhibits macrophage interleukin-1beta production through inhibition of activator protein-1 in lipopolysaccharide-induced murine pulmonary neutrophilia. Int Immunopharmacol. 2011;11:424–34.CrossRefPubMedGoogle Scholar
  72. 72.
    Gualdoni GA, Lingscheid T, Schmetterer KG, Hennig A, Steinberger P, Zlabinger GJ. Azithromycin inhibits IL-1 secretion and non-canonical inflammasome activation. Sci Rep. 2015;5:12016.CrossRefPubMedPubMedCentralGoogle Scholar
  73. 73.
    Vos R, Vanaudenaerde BM, Ottevaere A, Verleden SE, De Vleeschauwer SI, Willems-Widyastuti A, et al. Long-term azithromycin therapy for bronchiolitis obliterans syndrome: divide and conquer? J Heart Lung Transplant. 2010;29:1358–68.CrossRefPubMedGoogle Scholar
  74. 74.
    Vos R, Verleden SE, Ruttens D, Vandermeulen E, Bellon H, Neyrinck A, et al. Azithromycin and the treatment of lymphocytic airway inflammation after lung transplantation. Am J Transplant. 2014;14:2736–48.CrossRefPubMedGoogle Scholar
  75. 75.
    Ruttens D, Verleden SE, Vandermeulen E, Bellon H, Vanaudenaerde BM, Somers J, et al. Prophylactic azithromycin therapy after lung transplantation: post hoc analysis of a randomized controlled trial. Am J Transpl; 2016;16:254–61.CrossRefGoogle Scholar
  76. 76.
    Navarro-Xavier RA, Newson J, Silveira VLF, Farrow SN, Gilroy DW, Bystrom J. A New strategy for the identification of novel molecules with targeted proresolution of inflammation properties. J Immunol. 2010;184:1516–25.CrossRefPubMedGoogle Scholar
  77. 77.
    Vrancic M, Banjanac M, Nujic K, Bosnar M, Murati T, Munic V, et al. Azithromycin distinctively modulates classical activation of human monocytes in vitro. Br J Pharmacol. 2012;165:1348–60.CrossRefPubMedPubMedCentralGoogle Scholar
  78. 78.
    Polancec DS, Kos VM, Banjanac M, Vrancic M, Cuzic S, Belamaric D, et al. Azithromycin drives in vitro GM-CSF/IL-4-induced differentiation of human blood monocytes toward dendritic-like cells with regulatory properties. J Leukocyte Biol. 2012;91:229–43.CrossRefPubMedGoogle Scholar
  79. 79.
    Erakovic Haber V, Bosnar M, Kragol G. The design of novel classes of macrolides for neutrophil-dominated inflammatory diseases. Future Med Chem. 2014;6:657–74.CrossRefPubMedGoogle Scholar
  80. 80.
    Scannell JW, Blanckley A, Boldon H, Warrington B. Diagnosing the decline in pharmaceutical R&D efficiency. Nat Rev Drug Discov. 2012;11:191–200.CrossRefPubMedGoogle Scholar
  81. 81.
    Bleicher KH, Bohm HJ, Muller K, Alanine AI. Hit and lead generation: beyond high-throughput screening. Nat Rev Drug Discov. 2003;2:369–78.CrossRefPubMedGoogle Scholar
  82. 82.
    Schirle M, Jenkins JL. Identifying compound efficacy targets in phenotypic drug discovery. Drug Discov Today. 2016;21:82–9.CrossRefPubMedGoogle Scholar
  83. 83.
    Lipinski CA. Drug-like properties and the causes of poor solubility and poor permeability. J Pharmacol Toxicol Methods. 2000;44:235–49.CrossRefPubMedGoogle Scholar
  84. 84.
    Lipinski CA. Lead- and drug-like compounds: the rule-of-five revolution. Drug Discov Today Technol. 2004;1:337–41.CrossRefPubMedGoogle Scholar
  85. 85.
    Vincent F, Loria P, Pregel M, Stanton R, Kitching L, Nocka K, et al. Developing predictive assays: the phenotypic screening “rule of 3”. Sci Transl Med. 2015;7:293ps15.CrossRefPubMedGoogle Scholar
  86. 86.
    Dorward DA, Lucas CD, Rossi AG, Haslett C, Dhaliwal K. Imaging inflammation: molecular strategies to visualize key components of the inflammatory cascade, from initiation to resolution. Pharmacol Ther. 2012;135:182–99.CrossRefPubMedGoogle Scholar
  87. 87.
    Cunha L, Horvath I, Ferreira S, Lemos J, Costa P, Vieira D, et al. Preclinical imaging: an essential ally in modern biosciences. Mol Diagn Therapy. 2014;18:153–73.CrossRefGoogle Scholar
  88. 88.
    Busch W, Duis K, Fenske M, Maack G, Legler J, Padilla S, et al. The zebrafish embryo model in toxicology and teratology, September 2–3, 2010, Karlsruhe, Germany. Reprod Toxicol. 2011;31:585–8.CrossRefPubMedGoogle Scholar
  89. 89.
    Bruni G, Lakhani P, Kokel D. Discovering novel neuroactive drugs through high-throughput behavior-based chemical screening in the zebrafish. Front Pharmacol. 2014;5:153.CrossRefPubMedPubMedCentralGoogle Scholar
  90. 90.
    Schmitz K, de Bruin N, Bishay P, Mannich J, Haussler A, Altmann C, et al. R-flurbiprofen attenuates experimental autoimmune encephalomyelitis in mice. EMBO Mol Med. 2014;6:1398–422.CrossRefPubMedPubMedCentralGoogle Scholar
  91. 91.
    De Bruin NMWJ, Schmitz K, Tegeder I, Talmon S, Jordan H, Schmidt M, et al. Treatment with FTY-720 reverses social recognition deficits without affecting clinical scores or impaired motor performance in EAE in SJL mice. J Neuroimmunol. 2014;275:115.CrossRefGoogle Scholar
  92. 92.
    Finn CA. Artifacts: An Archaeologist's Year in Silicon Valley 2001. MIT Press, Cambridge, MA, p. 90Google Scholar
  93. 93.
    Szent-Gyorgyi A., Xplore Inc, 2016. Accessed 20 Sep 2016

Copyright information

© Springer International Publishing 2016

Authors and Affiliations

  1. 1.Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Project Group Translational Medicine and Pharmacology TMPFrankfurtGermany

Personalised recommendations