Inflammation Research

, Volume 64, Issue 8, pp 565–575 | Cite as

A therapeutic role for vitamin D on obesity-associated inflammation and weight-loss intervention

  • Aaron L. Slusher
  • Matthew J. McAllister
  • Chun-Jung Huang


Vitamin D plays an essential role in the regulation of skeletal metabolism as well as calcium and phosphate homeostasis, while vitamin D receptor (VDR) regulates de novo lipid synthesis, thereby contributing to the development of obesity. Furthermore, obese individuals are at a greater risk for vitamin D deficiency which may increase the potential risk for chronic inflammation, insulin resistance, and metabolic syndrome. While acute exercise enhances the activation of inflammatory signaling pathways, chronic exercise training may attenuate elevated pro-inflammatory cytokine production, resulting in the improvement of cardiovascular and metabolic health in obese individuals. Supplementation with vitamin D coupled with exercise or mild caloric restriction has been shown to improve markers of fitness and inflammation as well as cholesterol. Therefore, this review primarily addresses the impact of vitamin D deficiency in obesity-related inflammatory imbalances and how exercise and weight-loss interventions may enhance the beneficial effects on vitamin D-mediated inflammation in obesity.


Vitamin D Obesity Inflammation Cardiorespiratory fitness Exercise 



The authors would like to thank Mr. J. Thomas Mock and Ms. Kathrine M. McFarland for their contributions to this paper.


  1. 1.
    MacLaughlin J, Holick MF. Aging decreases the capacity of human skin to produce vitamin D3. J Clin Invest. 1985;76:1536–8.PubMedCentralPubMedGoogle Scholar
  2. 2.
    Bischoff-Ferrari H, Borchers M, Gudat F, Dürmüller U, Stähelin H, Dick W. Vitamin D receptor expression in human muscle tissue decreases with age. J Bone Miner Res. 2004;19:265–9.PubMedGoogle Scholar
  3. 3.
    McGill A-T, Stewart JM, Lithander FE, Strik CM, Poppitt SD. Relationships of low serum vitamin D3 with anthropometry and markers of the metabolic syndrome and diabetes in overweight and obesity. Nutr J. 2008;7:4.PubMedCentralPubMedGoogle Scholar
  4. 4.
    Kunadian V, Ford GA, Bawamia B, Qiu W, Manson JE. Vitamin D deficiency and coronary artery disease: a review of the evidence. Am Heart J. 2014;167:283–91.PubMedGoogle Scholar
  5. 5.
    Holick MF. Vitamin D deficiency. N Engl J Med. 2007;357:266–81.PubMedGoogle Scholar
  6. 6.
    Miettinen ME, Kinnunen L, Leiviskä J, Keinänen-Kiukaanniemi S, Korpi-Hyövälti E, Niskanen L, Oksa H, Saaristo T, Tuomilehto J, Vanhala M. Association of serum 25-hydroxyvitamin D with lifestyle factors and metabolic and cardiovascular disease markers: population-based cross-sectional study (FIN-D2D). PLoS ONE. 2014;9:e100235.PubMedCentralPubMedGoogle Scholar
  7. 7.
    Wortsman J, Matsuoka LY, Chen TC, Lu Z, Holick MF. Decreased bioavailability of vitamin D in obesity. Am J Clin Nutr. 2007;72:690–3.Google Scholar
  8. 8.
    Khoo A-L, Chai LY, Koenen HJ, Kullberg B-J, Joosten I, van der Ven AJ, Netea MG. 1, 25-Dihydroxyvitamin D3 modulates cytokine production induced by Candida albicans: impact of seasonal variation of immune responses. J Infect Dis. 2011;203:122–30.PubMedCentralPubMedGoogle Scholar
  9. 9.
    Li B, Baylink DJ, Deb C, Zannetti C, Rajaallah F, Xing W, Walter MH, Lau K-HW, Qin X. 1, 25-Dihydroxyvitamin D3 suppresses TLR8 expression and TLR8-mediated inflammatory responses in monocytes in vitro and experimental autoimmune encephalomyelitis in vivo. PLoS ONE. 2013;8:e58808.PubMedCentralPubMedGoogle Scholar
  10. 10.
    Gao D, Trayhurn P, Bing C. 1, 25-Dihydroxyvitamin D3 inhibits the cytokine-induced secretion of MCP-1 and reduces monocyte recruitment by human preadipocytes. Int J Obes (Lond). 2013;37:357–65.PubMedCentralGoogle Scholar
  11. 11.
    Kahn SE, Hull RL, Utzschneider KM. Mechanisms linking obesity to insulin resistance and type 2 diabetes. Nature. 2006;444:840–6.PubMedGoogle Scholar
  12. 12.
    Van Gaal LF, Mertens IL, Christophe E. Mechanisms linking obesity with cardiovascular disease. Nature. 2006;444:875–80.PubMedGoogle Scholar
  13. 13.
    Braith RW, Stewart KJ. Resistance exercise training its role in the prevention of cardiovascular disease. Circulation. 2006;113:2642–50.PubMedGoogle Scholar
  14. 14.
    Sigal RJ, Kenny GP, Boulé NG, Wells GA, Prud’homme D, Fortier M, Reid RD, Tulloch H, Coyle D, Phillips P. Effects of aerobic training, resistance training, or both on glycemic control in type 2 diabetesa randomized trial. Ann Intern Med. 2007;147:357–69.PubMedGoogle Scholar
  15. 15.
    Villareal DT, Chode S, Parimi N, Sinacore DR, Hilton T, Armamento-Villareal R, Napoli N, Qualls C, Shah K. Weight loss, exercise, or both and physical function in obese older adults. N Engl J Med. 2011;364:1218–29.PubMedCentralPubMedGoogle Scholar
  16. 16.
    Cannell JJ, Hollis BW, Sorenson MB, Taft TN, Anderson J. Athletic performance and vitamin D. Med Sci Sports Exerc. 2009;41:1102–10.PubMedGoogle Scholar
  17. 17.
    Mozoåowski W. Jäccaron; drzej Sniadecki (1768–1838) on the cure of rickets. Nature. 1939;143:121.Google Scholar
  18. 18.
    IVlyton C. The geographical distribution and etiology of rickets. By Theobald A. Palm, MA, MD. The Practitioner 1890:45:270.Google Scholar
  19. 19.
    Mellanby E. The part played by an “accessory factor” in the production of experiental rickets. J Physiol. 1918–1919;52:xi–xii, liii–liv.Google Scholar
  20. 20.
    McCollum EF, Simmonds N, Becker JE, Shipley PG. Studies on experimental rickets: and experimental demonstration of the existence of a vitamin which promotes calcium deposition. J Biol Chem. 1922;53:293–312.Google Scholar
  21. 21.
    Windaus A, Linsert O, Luttringhaus A, Weidlinch G. Über das krystallisierte vitamin D2. Justus Liebigs Ann Chem. 1932;492:226–31.Google Scholar
  22. 22.
    Angus TC, Askew FA, Bourdillon RB, Bruce HM, Callow R, Fischmann C, Philpot L, Webster TA. A crystalline antirachitic substance. Proc Royal Soc Ser B. 1931;108:340–59.Google Scholar
  23. 23.
    Windaus A, Schenck F, von Werder F. Über das antirachitisch wirksame Bestrahlungsproduct aus 7-Dehydrocholesterin. HoppeSeylers Ztschr Physiol Chem. 1936;241:100–3.Google Scholar
  24. 24.
    Holick MF, MacLaughlin J, Clark M, Holick S, Potts J, Anderson R, Blank I, Parrish J, Elias P. Photosynthesis of previtamin D3 in human skin and the physiologic consequences. Science. 1980;210:203–5.PubMedGoogle Scholar
  25. 25.
    Tian XQ, Chen TC, Matsuoka L, Wortsman J, Holick M. Kinetic and thermodynamic studies of the conversion of previtamin D3 to vitamin D3 in human skin. J Biol Chem. 1993;268:14888–92.PubMedGoogle Scholar
  26. 26.
    MacLaughlin JA, Anderson R, Holick MF. Spectral character of sunlight modulates photosynthesis of previtamin D3 and its photoisomers in human skin. Science. 1982;216:1001–3.PubMedGoogle Scholar
  27. 27.
    Havinga E. Vitamin D, example and challenge. Experientia. 1973;29:1181–93.PubMedGoogle Scholar
  28. 28.
    Dubnov-Raz G, Livne N, Raz R, Cohen A, Constantini, N. Vitamin D supplementation and physical performance in adolescent swimmers. Int J Sport Nutr Exerc Metab. 2014 (Epub ahead of print).Google Scholar
  29. 29.
    Mutt SJ, Hypponen E, Saarnio J, Järvelin M-R, Herzig K-H. Vitamin D and adipose tissue-more than storage. Front Physiol. 2014;5:228.PubMedCentralPubMedGoogle Scholar
  30. 30.
    Holick MF. Resurrection of vitamin D deficiency and rickets. J Clin Invest. 2006;116:2062–72.PubMedCentralPubMedGoogle Scholar
  31. 31.
    Blunt J, DeLuca H, Schnoes H. 25-hydroxycholecalciferol. A biologically active metabolite of vitamin D3. Biochemistry. 1968;7:3317–22.PubMedGoogle Scholar
  32. 32.
    DeLuca H, Holick M, Schnoes H, Suda T, Cousins R. Isolation and identification of 1, 25-dihydroxycholecalciferol. A metabolite of vitamin D active in intestine. Biochemistry. 1971;10:2799–804.PubMedGoogle Scholar
  33. 33.
    Martini LA, Wood RJ. Vitamin D status and the metabolic syndrome. Nutr Rev. 2006;64:479–86.PubMedGoogle Scholar
  34. 34.
    Holick MF, MacLaughlin J, Doppelt S. Regulation of cutaneous previtamin D3 photosynthesis in man: skin pigment is not an essential regulator. Science. 1981;211:590–3.PubMedGoogle Scholar
  35. 35.
    Matsuoka LY, Ide L, Wortsman J, MacLaughlin JA, Holick MF. Sunscreens suppress cutaneous vitamin D3 synthesis. J Clin Endocrinol Metab. 1987;64:1165–8.PubMedGoogle Scholar
  36. 36.
    Clemens T, Henderson S, Adams J, Holick M. Increased skin pigment reduces the capacity of skin to synthesise vitamin D3. Lancet. 1982;319:74–6.Google Scholar
  37. 37.
    Matsuoka LY, Wortsman J, Haddad JG, Kolm P, Hollis BW. Racial pigmentation and the cutaneous synthesis of vitamin D. Arch Dermatol. 1991;127:536–8.PubMedGoogle Scholar
  38. 38.
    Webb AR, Kline L, Holick MF. Influence of season and latitude on the cutaneous synthesis of vitamin D3: exposure to winter sunlight in boston and edmonton will not promote vitamin D3 synthesis in human skin. J Clin Endocrinol Metab. 1988;67:373–8.PubMedGoogle Scholar
  39. 39.
    Holick MF. Vitamin D: importance in the prevention of cancers, type 1 diabetes, heart disease, and osteoporosis. Am J Clin Nutr. 2004;79:362–71.PubMedGoogle Scholar
  40. 40.
    Tan C, Statham B, Marks R, Payne P. Skin thickness measurement by pulsed ultrasound; its reproducibility, validation and variability. Br J Dermatol. 1982;106:657–67.PubMedGoogle Scholar
  41. 41.
    Cheng S, Massaro JM, Fox CS, Larson MG, Keyes MJ, McCabe EL, Robins SJ, O’Donnell CJ, Hoffmann U, Jacques PF. Adiposity, cardiometabolic risk, and vitamin D status: The Framingham Heart Study. Diabetes. 2010;59:242–8.PubMedCentralPubMedGoogle Scholar
  42. 42.
    Heaney RP, Holick MF. Why the iom recommendations for vitamin d are deficient. J Bone Miner Res. 2011;26:455–7.PubMedGoogle Scholar
  43. 43.
    Bouillon R, Carmeliet G, Verlinden L, van Etten E, Verstuyf A, Luderer HF, Lieben L, Mathieu C, Demay M. Vitamin D and human health: lessons from vitamin D receptor null mice. Endocr Rev. 2008;29:726–76.PubMedCentralPubMedGoogle Scholar
  44. 44.
    DeLuca HF. Overview of general physiologic features and functions of vitamin D. Am J Clin Nutr. 2004;80:1689S–96S.PubMedGoogle Scholar
  45. 45.
    Holick MF. Vitamin D status: measurement, interpretation, and clinical application. Ann Epidemiol. 2009;19:73–8.PubMedCentralPubMedGoogle Scholar
  46. 46.
    Holick MF, Binkley NC, Bischoff-Ferrari HA, Gordon CM, Hanley DA, Heaney RP, Murad MH, Weaver CM. Evaluation, treatment, and prevention of vitamin D deficiency: an endocrine society clinical practice guideline. J Clin Endocrinol Metab. 2011;96:1911–30.PubMedGoogle Scholar
  47. 47.
    Dong Y, Stallmann-Jorgensen IS, Pollock NK, Harris RA, Keeton D, Huang Y, Li K, Bassali R, Guo D-H, Thomas J. A 16-week randomized clinical trial of 2000 international units daily vitamin D3 supplementation in black youth: 25-hydroxyvitamin D, adiposity, and arterial stiffness. J Clin Endocrinol Metab. 2010;95:4584–91.PubMedGoogle Scholar
  48. 48.
    Aloia JF, Patel M, DiMaano R, Li-Ng M, Talwar SA, Mikhail M, Pollack S, Yeh JK. Vitamin D intake to attain a desired serum 25-hydroxyvitamin D concentration. Am J Clin Nutr. 2008;87:1952–8.PubMedGoogle Scholar
  49. 49.
    Ross AC, Manson JE, Abrams SA, Aloia JF, Brannon PM, Clinton SK, Durazo-Arvizu RA, Gallagher JC, Gallo RL, Jones G. The 2011 report on dietary reference intakes for calcium and vitamin D from the institute of medicine: what clinicians need to know. J Clin Endocrinol Metab. 2011;96:53–8.PubMedCentralPubMedGoogle Scholar
  50. 50.
    Trang HM, Cole D, Rubin LA, Pierratos A, Siu S, Vieth R. Evidence that vitamin D3 increases serum 25-hydroxyvitamin D more efficiently than does vitamin D2. Am J Clin Nutr. 1998;68:854–8.PubMedGoogle Scholar
  51. 51.
    Armas LA, Hollis BW, Heaney RP. Vitamin D2 is much less effective than vitamin D3 in humans. J Clin Endocrinol Metab. 2004;89:5387–91.PubMedGoogle Scholar
  52. 52.
    Biancuzzo RM, Clarke N, Reitz RE, Travison TG, Holick MF. Serum concentrations of 1, 25-dihydroxyvitamin D2 and 1, 25-dihydroxyvitamin D3 in response to vitamin D2 and vitamin D3 supplementation. J Clin Endocrinol Metab. 2013;98:973–9.PubMedCentralPubMedGoogle Scholar
  53. 53.
    Holick MF, Biancuzzo RM, Chen TC, Klein EK, Young A, Bibuld D, Reitz R, Salameh W, Ameri A, Tannenbaum AD. Vitamin D2 is as effective as vitamin D3 in maintaining circulating concentrations of 25-hydroxyvitamin D. J Clin Endocrinol Metab. 2008;93:677–81.PubMedCentralPubMedGoogle Scholar
  54. 54.
    Ogden CL, Carroll MD, Kit BK, Flegal KM. Prevalence of childhood and adult obesity in the United States, 2011-2012. JAMA. 2014;311:806–14.PubMedGoogle Scholar
  55. 55.
    Konradsen S, Ag H, Lindberg F, Hexeberg S, Jorde R. Serum 1, 25-dihydroxy vitamin D is inversely associated with body mass index. Eur J Nutr. 2008;47:87–91.PubMedGoogle Scholar
  56. 56.
    Parikh SJ, Edelman M, Uwaifo GI, Freedman RJ, Semega-Janneh M, Reynolds J, Yanovski JA. The relationship between obesity and serum 1, 25-dihydroxy vitamin D concentrations in healthy adults. J Clin Endocrinol Metab. 2004;89:1196–9.PubMedGoogle Scholar
  57. 57.
    Pereira-Santos M, Costa PRF, Assis AMO, Santos CAST, Santos DB. Obesity and vitamin D deficiency: a systemic review and meta-analysis. Obes Rev. 2015;16:341–9.PubMedGoogle Scholar
  58. 58.
    Compston JE, Vedi S, Ledger JE, Webb A, Gazet J-C, Pilkington T. Vitamin D status and bone histomorphometry in gross obesity. Am J Clin Nutr. 1981;34:2359–63.PubMedGoogle Scholar
  59. 59.
    Kamycheva E, Joakimsen RM, Jorde R. Intakes of calcium and vitamin D predict body mass index in the population of Northern Norway. J Nutr. 2003;133:102–6.PubMedGoogle Scholar
  60. 60.
    Rodríguez-Rodríguez E, Navia B, López-Sobaler AM, Ortega RM. Vitamin D in overweight/obese women and its relationship with dietetic and anthropometric variables. Obesity (Silver Spring). 2009;17:778–82.Google Scholar
  61. 61.
    Liel Y, Ulmer E, Shary J, Hollis BW, Bell NH. Low circulating vitamin D in obesity. Calcif Tissue Int. 1988;43:199–201.PubMedGoogle Scholar
  62. 62.
    Rosenstreich SJ, Rich C, Volwiler W. Deposition in and release of vitamin D3 from body fat: evidence for a storage site in the rat. J Clin Invest. 1971;50:679–87.PubMedCentralPubMedGoogle Scholar
  63. 63.
    Ford ES, Ajani UA, McGuire LC, Liu S. Concentrations of serum vitamin D and the metabolic syndrome among U.S. adults. Diabetes Care. 2005;28:1228–30.PubMedGoogle Scholar
  64. 64.
    Mitri J, Muraru M, Pittas A. Vitamin D and type 2 diabetes: a systematic review. Eur J Clin Nutr. 2011;65:1005–15.PubMedCentralPubMedGoogle Scholar
  65. 65.
    Wang TJ, Pencina MJ, Booth SL, Jacques PF, Ingelsson E, Lanier K, Benjamin EJ, D’Agostino RB, Wolf M, Vasan RS. Vitamin D deficiency and risk of cardiovascular disease. Circulation. 2008;117:503–11.PubMedGoogle Scholar
  66. 66.
    Norman AW. Vitamin d receptor: new assignments for an already busy receptor. Endocrinology. 2006;147:5542–8.PubMedGoogle Scholar
  67. 67.
    Plum LA, DeLuca HF. Vitamin D, disease and therapeutic opportunities. Nat Rev Drug Discov. 2010;9:941–55.PubMedGoogle Scholar
  68. 68.
    Demay MB. Mechanism of vitamin D receptor action. Ann NY Acad Sci. 2006;1068:204–13.PubMedGoogle Scholar
  69. 69.
    Mangelsdorf DJ, Thummel C, Beato M, Herrlich P, Schütz G, Umesono K, Blumberg B, Kastner P, Mark M, Chambon P. The nuclear receptor superfamily: the second decade. Cell. 1995;83:835–9.PubMedGoogle Scholar
  70. 70.
    Blumberg JM, Tzameli I, Astapova I, Lam FS, Flier JS, Hollenberg AN. Complex role of the vitamin D receptor and its ligand in adipogenesis in 3T3-L1 cells. J Biol Chem. 2006;281:11205–13.PubMedGoogle Scholar
  71. 71.
    Ding C, Gao D, Wilding J, Trayhurn P, Bing C. Vitamin D signalling in adipose tissue. Br J Nutr. 2012;108:1915–23.PubMedGoogle Scholar
  72. 72.
    Stephens JM. The fat controller: adipocyte development. PLoS Biol. 2012;10:e1001436.PubMedCentralPubMedGoogle Scholar
  73. 73.
    Kern PA, Ranganathan S, Li C, Wood L, Ranganathan G. Adipose tissue tumor necrosis factor and interleukin-6 expression in human obesity and insulin resistance. Am J Physiol Endocrinol Metab. 2001;280:E745–51.PubMedGoogle Scholar
  74. 74.
    Lehr S, Hartwig S, Lamers D, Famulla S, Müller S, Hanisch F-G, Cuvelier C, Ruige J, Eckardt K, Ouwens DM. Identification and validation of novel adipokines released from primary human adipocytes. Mol Cell Proteomics. 2012;11(M111):010504.PubMedGoogle Scholar
  75. 75.
    Weisberg SP, McCann D, Desai M, Rosenbaum M, Leibel RL, Ferrante AW. Obesity is associated with macrophage accumulation in adipose tissue. J Clin Invest. 2003;112:1796–808.PubMedCentralPubMedGoogle Scholar
  76. 76.
    Xu H, Barnes GT, Yang Q, Tan G, Yang D, Chou CJ, Sole J, Nichols A, Ross JS, Tartaglia LA. Chronic inflammation in fat plays a crucial role in the development of obesity-related insulin resistance. J Clin Invest. 2003;112:1821–30.PubMedCentralPubMedGoogle Scholar
  77. 77.
    Lumeng CN, Bodzin JL, Saltiel AR. Obesity induces a phenotypic switch in adipose tissue macrophage polarization. J Clin Invest. 2007;117:175–84.PubMedCentralPubMedGoogle Scholar
  78. 78.
    Hotamisligil GS. Inflammation and metabolic disorders. Nature. 2006;444:860–7.PubMedGoogle Scholar
  79. 79.
    Vlasova M, Purhonen A, Jarvelin M, Rodilla E, Pascual J, Herzig K. Role of adipokines in obesity-associated hypertension. Acta Physiol (Oxf). 2010;200:107–27.PubMedGoogle Scholar
  80. 80.
    Bland R, Markovic D, Hills CE, Hughes SV, Chan SL, Squires PE, Hewison M. Expression of 25-hydroxyvitamin D3-1α-hydroxylase in pancreatic islets. J Steroid Biochem Mol Biol. 2004;89–90:121–5.PubMedGoogle Scholar
  81. 81.
    Eyles DW, Smith S, Kinobe R, Hewison M, McGrath JJ. Distribution of the vitamin D receptor and 1α-hydroylase in human brain. J Chem Neuroanat. 2005;29:21–30.PubMedGoogle Scholar
  82. 82.
    Zehnder D, Bland R, Chana RS, Wheeler DC, Howie AJ, Williams MC, Stewart PM, Hewison M. Synthesis of 1,25-dihydroxyvitamin D3 by human endothelial cells is regulated by inflammatory cytokines: a novel autocrine determinant of vascular cell adhesion. J Am Soc Nephrol. 2002;13:621–91.PubMedGoogle Scholar
  83. 83.
    Somjen D, Weisman Y, Kohen F, Gayer B, Limor R, Sharon O, Jaccard N, Knoll E, Stern N. 25-hydroxyvitamin D3-1α-hydroxylase is expressed in human vascular smooth muscle cells and is upregulated by parathyroid hormone and estrogenic compounds. Circulation. 2005;5:1666–71.Google Scholar
  84. 84.
    Li J, Byrne ME, Chang E, Jiang Y, Donkin SS, Buhman KK, Burgess JR, Teegarden D. 1α,25-dihydroxyvitamin D hydroxylase in adipocytes. J Steroid Biochem Mol Biol. 2008;112:122–6.PubMedCentralPubMedGoogle Scholar
  85. 85.
    Hewison M. Vitamin D and the immune system: new perspectives on an old theme. Endocrinol Metab Clin North Am. 2010;39:365–79.PubMedCentralPubMedGoogle Scholar
  86. 86.
    Liu PT, Stenger S, Li H, Wenzel L, Tan BH, Krutzik SR, Ochoa MT, Schauber J, Wu K, Meinken C. Toll-like receptor triggering of a vitamin D-mediated human antimicrobial response. Science. 2006;311:1770–3.PubMedGoogle Scholar
  87. 87.
    vinh quOpen image in new windowc LOpen image in new window Open image in new windowng K, NguyOpen image in new windown LT. The beneficial role of vitamin D in obesity: possible genetic and cell signaling mechanisms. Nutr J. 2013;12:89.Google Scholar
  88. 88.
    Vitseva OI, Tanriverdi K, Tchkonia TT, Kirkland JL, McDonnell ME, Apovian CM, Freedman J, Gokce N. Inducible toll-like receptor and NF-κB regulatory pathway expression in human adipose tissue. Obesity (Silver Spring). 2008;16:932–7.PubMedCentralPubMedGoogle Scholar
  89. 89.
    Kawai T, Akira S. The role of pattern-recognition receptors in innate immunity: update on toll-like receptors. Nat Immunol. 2010;11:373–84.PubMedGoogle Scholar
  90. 90.
    Könner AC, Brüning JC. Toll-like receptors: linking inflammation to metabolism. Trends Endocrinol Metab. 2011;22:16–23.Google Scholar
  91. 91.
    Creely SJ, McTernan PG, Kusminski CM, Da Silva N, Khanolkar M, Evans M, Harte A, Kumar S. Lipopolysaccharide activates an innate immune system response in human adipose tissue in obesity and type 2 diabetes. Am J Physiol Endocrinol Metab. 2007;292:E740–7.PubMedGoogle Scholar
  92. 92.
    Scholtes VP, Versteeg D, de Vries J-PP, Hoefer IE, Schoneveld AH, Stella PR, Doevendans PA, van Keulen KJ, de Kleijn DP, Moll FL. Toll-like receptor 2 and 4 stimulation elicits an enhanced inflammatory response in human obese patients with atherosclerosis. Clin Sci. 2011;121:205–14.PubMedGoogle Scholar
  93. 93.
    Kim S-J, Choi Y, Choi Y-H, Park T. Obesity activates toll-like receptor-mediated proinflammatory signaling cascades in the adipose tissue of mice. J Nutr Biochem. 2012;23:113–22.PubMedGoogle Scholar
  94. 94.
    Davis JE, Braucher DR, Walker-Daniels J, Spurlock ME. Absence of TLR2 protects against high-fat diet-induced inflammation and results in greater insulin-stimulated glucose transport in cultured adipocytes. J Nutr Biochem. 2011;22:136–41.PubMedGoogle Scholar
  95. 95.
    Tsukumo DM, Carvalho-Filho MA, Carvalheira JB, Prada PO, Hirabara SM, Schenka AA, Araújo EP, Vassallo J, Curi R, Velloso LA. Loss-of-function mutation in toll-like receptor 4 prevents diet-induced obesity and insulin resistance. Diabetes. 2007;56:1986–98.PubMedGoogle Scholar
  96. 96.
    Khoo AL, Chai L, Koenen H, Sweep F, Joosten I, Netea M, van der Ven A. Regulation of cytokine responses by seasonality of vitamin D status in healthy individuals. Clin Exp Immunol. 2011;164:72–9.PubMedCentralPubMedGoogle Scholar
  97. 97.
    Schleithoff SS, Zittermann A, Tenderich G, Berthold HK, Stehle P, Koerfer R. Vitamin D supplementation improves cytokine profiles in patients with congestive heart failure: a double-blind, randomized, placebo-controlled trial. Am J Clin Nutr. 2006;83:754–9.PubMedGoogle Scholar
  98. 98.
    Petchey WG, Johnson DW, Isbel NM. Shining D’light on chronic kidney disease: mechanisms that may underpin the cardiovascular benefit of vitamin D. Nephrology (Carlton). 2011;16:351–67.Google Scholar
  99. 99.
    Bolland MJ, Grey AB, Ames RW, Mason BH, Horne AM, Gamble GD, Reid IR. The effects of seasonal variation of 25-hydroxyvitamin D and fat mass on a diagnosis of vitamin D sufficiency. Am J Clin Nutr. 2007;86:959–64.PubMedGoogle Scholar
  100. 100.
    Hirosumi J, Tuncman G, Chang L, Görgün CZ, Uysal KT, Maeda K, Karin M, Hotamisligil GS. A central role for jnk in obesity and insulin resistance. Nature. 2002;420:333–6.PubMedGoogle Scholar
  101. 101.
    Nguyen MA, Satoh H, Favelyukis S, Babendure JL, Imamura T, Sbodio JI, Zalevsky J, Dahiyat BI, Chi N-W, Olefsky JM. JNK and tumor necrosis factor-α mediate free fatty acid-induced insulin resistance in 3T3-L1 adipocytes. J Biol Chem. 2005;280:35361–71.PubMedGoogle Scholar
  102. 102.
    Sun H, Charles CH, Lau LF, Tonks NK. MKP-1 (3CH134), an immediate early gene product, is a dual specificity phosphatase that dephosphorylates MAP kinase in vivo. Cell. 1993;75:487–93.PubMedGoogle Scholar
  103. 103.
    Ito A, Suganami T, Miyamoto Y, Yoshimasa Y, Takeya M, Kamei Y, Ogawa Y. Role of MAPK phosphatase-1 in the induction of monocyte chemoattractant protein-1 during the course of adipocyte hypertrophy. J Biol Chem. 2007;282:25445–52.PubMedGoogle Scholar
  104. 104.
    Oh J, Weng S, Felton SK, Bhandare S, Riek A, Butler B, Proctor BM, Petty M, Chen Z, Schechtman KB. 1,25(OH)2 vitamin D inhibits foam cell formation and suppresses macrophage cholesterol uptake in patients with type 2 diabetes mellitus. Circulation. 2009;120:687–98.PubMedCentralPubMedGoogle Scholar
  105. 105.
    Lorente-Cebrián S, Eriksson A, Dunlop T, Mejhert N, Dahlman I, Aström G, Sjölin E, Wåhlén K, Carlberg C, Laurencikiene J, Hedén P, Arner P, Rydén M. Differential effects of 1α,25-dihydroxycholecalciferol on MCP-1 and adiponectin production in human white adipocytes. Eur J Nutr. 2012;51:335–42.PubMedGoogle Scholar
  106. 106.
    Chen Y, Zhang J, Ge X, Du J, Deb DK, Li YC. Vitamin D receptor inhibits nuclear factor κB activation by interacting with IκB kinase β protein. J Biol Chem. 2013;5:19450–8.Google Scholar
  107. 107.
    Canning MO, Grotenhuis K, de Wit H, Ruwhof C, Drexhage HA. 1-alpha,25-Dihydroxyvitamin D3 (1,25(OH)(2)D(3)) hampers the maturation of fully active immature dendritic cells from monocytes. Eur J Endocrinol. 2001;145:351–7.PubMedGoogle Scholar
  108. 108.
    Daniel C, Sartory NA, Zahn N, Radeke HH, Stein JM. Immune modulatory treatment of trinitrobenzene sulfonic acid colitis with calcitriol is associated with a change of a T helper (Th) 1/Th17 to a Th2 and regulatory T cell profile. J Pharmacol Exp Ther. 2008;324:23–33.PubMedGoogle Scholar
  109. 109.
    Zhang X, Zhou M, Guo Y, Song Z, Liu B. 1,25-dihydroxyvitamin D3 promotes high glucose-induced M1 macrophage switching to M2 via the VDR-PPARγ signaling pathway. Biomed Res Int. 2015;2015:157834.PubMedCentralPubMedGoogle Scholar
  110. 110.
    Galic S, Oakhill JS, Steinberg GR. Adipose tissue as an endocrine organ. Mol Cell Endocrinol. 2010;25:129–39.Google Scholar
  111. 111.
    Do Lee C, Blair SN, Jackson AS. Cardiorespiratory fitness, body composition, and all-cause and cardiovascular disease mortality in men. Am J Clin Nutr. 1999;69:373–80.Google Scholar
  112. 112.
    Lee D-C, Sui X, Artero EG, Lee I-M, Church TS, McAuley PA, Stanford FC, Kohl HW, Blair SN. Long-term effects of changes in cardiorespiratory fitness and body mass index on all-cause and cardiovascular disease mortality in men the aerobics center longitudinal study. Circulation. 2011;124:2483–90.PubMedCentralPubMedGoogle Scholar
  113. 113.
    Kullo IJ, Khaleghi M, Hensrud DD. Markers of inflammation are inversely associated with VO2 max in asymptomatic men. J Appl Physiol. 1985;2007(102):1374–9.Google Scholar
  114. 114.
    Mowry DA, Costello MM, Heelan KA. Association among cardiorespiratory fitness, body fat, and bone marker measurements in healthy young females. J Am Osteopath Assoc. 2009;109:534–9.PubMedGoogle Scholar
  115. 115.
    Christiansen T, Paulsen SK, Bruun JM, Pedersen SB, Richelsen B. Exercise training versus diet-induced weight-loss on metabolic risk factors and inflammatory markers in obese subjects: a 12-week randomized intervention study. Am J Physiol Endocrinol Metab. 2010;298:E824–31.PubMedGoogle Scholar
  116. 116.
    Steensberg A, Toft AD, Bruunsgaard H, Sandmand M, Halkjær-Kristensen J, Pedersen BK. Strenuous exercise decreases the percentage of type 1 T cells in the circulation. J Appl Physiol. 1985;2001(91):1708–12.Google Scholar
  117. 117.
    Steensberg A, Toft AD, Schjerling P, Halkjær-Kristensen J, Pedersen BK. Plasma interleukin-6 during strenuous exercise: role of epinephrine. Am J Physiol Cell Physiol. 2001;281:C1001–4.PubMedGoogle Scholar
  118. 118.
    Yamada M, Suzuki K, Kudo S, Totsuka M, Nakaji S, Sugawara K. Raised plasma G-CSF and IL-6 after exercise may play a role in neutrophil mobilization into the circulation. J Appl Physiol. 1985;2002(92):1789–94.Google Scholar
  119. 119.
    Smith L, Anwar A, Fragen M, Rananto C, Johnson R, Holbert D. Cytokines and cell adhesion molecules associated with high-intensity eccentric exercise. Eur J Appl Physiol. 2000;82:61–7.PubMedGoogle Scholar
  120. 120.
    MacIntyre DL, Sorichter S, Mair J, Berg A, McKenzie DC. Markers of inflammation and myofibrillar proteins following eccentric exercise in humans. Eur J Appl Physiol. 2001;84:180–6.PubMedGoogle Scholar
  121. 121.
    Peake J, Nosaka KK, Muthalib M, Suzuki K. Systemic inflammatory responses to maximal versus submaximal lengthening contractions of the elbow flexors. Exerc Immunol Rev. 2006;12:72–85.PubMedGoogle Scholar
  122. 122.
    Gokhale R, Chandrashekara S, Vasanthakumar K. Cytokine response to strenuous exercise in athletes and non-athletes—an adaptive response. Cytokine. 2007;40:123–7.PubMedGoogle Scholar
  123. 123.
    Fischer CP, Plomgaard P, Hansen AK, Pilegaard H, Saltin B, Pedersen BK. Endurance training reduces the contraction-induced interleukin-6 mRNA expression in human skeletal muscle. Am J Physiol Endocrinol Metab. 2004;287:E1189–94.PubMedGoogle Scholar
  124. 124.
    Harris RA, Padilla J, Hanlon KP, Rink LD, Wallace JP. The flow-mediated dilation response to acute exercise in overweight active and inactive men. Obesity (Silver Spring). 2008;16:578–84.Google Scholar
  125. 125.
    Christiansen T, Bruun JM, Paulsen SK, Ølholm J, Overgaard K, Pedersen SB, Richelsen B. Acute exercise increases circulating inflammatory markers in overweight and obese compared with lean subjects. Eur J Appl Physiol. 2013;113:1635–42.PubMedGoogle Scholar
  126. 126.
    Ploeger HE, Takken T, De Greef M, Timmons BW. The effects of acute and chronic exercise on inflammatory markers in children and adults with a chronic inflammatory disease: a systematic review. Exerc Immunol Rev. 2009;15:6–41.PubMedGoogle Scholar
  127. 127.
    Bruun JM, Helge JW, Richelsen B, Stallknecht B. Diet and exercise reduce low-grade inflammation and macrophage infiltration in adipose tissue but not in skeletal muscle in severely obese subjects. Am J Physiol Endocrinol Metab. 2005;290:E961–7.PubMedGoogle Scholar
  128. 128.
    Bruunsgaard H. Physical activity and modulation of systemic low-level inflammation. J Leukoc Biol. 2005;78:819–35.PubMedGoogle Scholar
  129. 129.
    Stewart LK, Flynn MG, Campbell WW, Craig BA, Robinson JP, McFarlin BK, Timmerman KL, Coen PM, Felker J, Talbert E. Influence of exercise training and age on CD14 + cell-surface expression of toll-like receptor 2 and 4. Brain Behav Immun. 2005;19:389–97.PubMedGoogle Scholar
  130. 130.
    Straczkowski M, Kowalska I, Dzienis-Straczkowska S, Stepien A, Skibinska E, Szelachowska M, Kinalska I. Changes in tumor necrosis factor-alpha system and insulin sensitivity during an exercise training program in obese women with normal and impaired glucose tolerance. Eur J Endocrinol. 2001;145:273–80.PubMedGoogle Scholar
  131. 131.
    Kawanishi N, Yano H, Yokogawa Y, Suzuki K. Exercise training inhibits inflammation in adipose tissue via both suppression of macrophage infiltration and acceleration of phenotypic switching from M1 to M2 macrophages in high-fat-diet-induced obese mice. Exerc Immunol Rev. 2010;16:105–18.PubMedGoogle Scholar
  132. 132.
    Phillips MD, Patrizi RM, Cheek DJ, Wooten JS, Barbee JJ, Mitchell JB. Resistance training reduces subclinical inflammation in obese, postmenopausal women. Med Sci Sports Exerc. 2012;44:2099–110.PubMedGoogle Scholar
  133. 133.
    Kopp H-P, Kopp C, Festa A, Krzyzanowska K, Kriwanek S, Minar E, Roka R, Schernthaner G. Impact of weight loss on inflammatory proteins and their association with the insulin resistance syndrome in morbidly obese patients. Arterioscler Thromb Vasc Biol. 2003;23:1042–7.PubMedGoogle Scholar
  134. 134.
    Reinehr T, de Sousa G, Alexy U, Kersting M, Andler W. Vitamin D status and parathyroid hormone in obese children before and after weight loss. Eur J Endocrinol. 2007;157:225–32.PubMedGoogle Scholar
  135. 135.
    Tzotzas T, Papadopoulou FG, Tziomalos K, Karras S, Gastaris K, Perros P, Krassas GE. Rising serum 25-hydroxy-vitamin D levels after weight loss in obese women correlate with improvement in insulin resistance. J Clin Endocrinol Metab. 2010;95:4251–7.PubMedGoogle Scholar
  136. 136.
    Villareal DT, Shah K, Banks MR, Sinacore DR, Klein S. Effect of weight loss and exercise therapy on bone metabolism and mass in obese older adults: a one-year randomized controlled trial. J Clin Endocrinol Metab. 2008;93:2181–7.PubMedCentralPubMedGoogle Scholar
  137. 137.
    Rosenblum JL, Castro VM, Moore CE, Kaplan LM. Calcium and vitamin D supplementation is associated with decreased abdominal visceral adipose tissue in overweight and obese adults. Am J Clin Nutr. 2012;95:101–8.PubMedCentralPubMedGoogle Scholar
  138. 138.
    Zittermann A, Frisch S, Berthold HK, Götting C, Kuhn J, Kleesiek K, Stehle P, Koertke H, Koerfer R. Vitamin D supplementation enhances the beneficial effects of weight loss on cardiovascular disease risk markers. Am J Clin Nutr. 2009;89:1321–7.PubMedGoogle Scholar
  139. 139.
    Major GC, Alarie F, Doré J, Phouttama S, Tremblay A. Supplementation with calcium + vitamin D enhances the beneficial effect of weight loss on plasma lipid and lipoprotein concentrations. Am J Clin Nutr. 2007;85:54–9.PubMedGoogle Scholar
  140. 140.
    You T, Berman DM, Ryan AS, Nicklas BJ. Effects of hypocaloric diet and exercise training on inflammation and adipocyte lipolysis in obese postmenopausal women. J Clin Endocrinol Metab. 2004;89:1739–46.PubMedGoogle Scholar
  141. 141.
    Rayalam S, Della-Fera MA, Ambati S, Yang JY, Park HJ, Baile CA. Enhanced effects of 1,25(OH)2D3 plus genistein on adipogenesis and apoptosis in 3T3-L1 adipocytes. Obesity (Silver Spring). 2008;16:539–46.PubMedGoogle Scholar

Copyright information

© Springer Basel 2015

Authors and Affiliations

  1. 1.Department of Kinesiology and Health SciencesVirginia Commonwealth UniversityRichmondUSA
  2. 2.Department of KinesiologyMississippi State UniversityMississippi StateUSA
  3. 3.Exercise Biochemistry Laboratory, Department of Exercise Science and Health PromotionFlorida Atlantic UniversityBoca RatonUSA

Personalised recommendations