Inflammation Research

, Volume 64, Issue 1, pp 31–40 | Cite as

Low-dose mercury heightens early innate response to coxsackievirus infection in female mice

  • Kayla L. Penta
  • DeLisa Fairweather
  • Devon L. Shirley
  • Noel R. Rose
  • Ellen K. Silbergeld
  • Jennifer F. Nyland
Original Research Paper



Mercury is a ubiquitous environmental contaminant with toxic outcomes over a range of exposures. In this study, we investigated the effects of mercury exposure on early immune responses to coxsackievirus B3 (CVB3) infection in a murine model of autoimmune heart disease.

Materials and methods

Female BALB/c mice, susceptible to CVB3-induced autoimmune myocarditis, were treated with mercuric chloride (200 μg/kg body weight every other day for 2 weeks) prior to infection with CVB3. Six hours post-infection, immune cells were isolated from the spleen and peritoneum for flow cytometry, gene expression, and cytokine profiling. Thirty-five days post-infection, hearts were collected for histological examination of immune cell infiltration.


As for male mice, mercury exposure significantly increased autoimmune myocarditis and immune infiltration into the heart. During the innate response 6 h post-infection, mercury increased expression of co-stimulatory molecules and innate immune receptors on peritoneal macrophages. At the same time point, the alternatively activated macrophage gene, arginase, was increased while the classically activated macrophage gene, inducible nitric oxide synthase, was unaffected. Expression of activation markers were decreased on peritoneal B cells with mercury exposure while T cells were unaffected. Mercury increased production of pro-inflammatory mediators in the spleen. Macrophage-recruiting chemokines and activating cytokines, such as CCL2, CCL4, and IL-6, were increased with mercury following CVB3 infection.


Thus, mercury treatment exacerbates autoimmune myocarditis in female mice and alters early innate signaling on peritoneal macrophages. Mercury also modulates the cytokine profile in the spleen toward a macrophage-activating milieu, and upregulates alternatively activated macrophage genes, providing evidence that mercury exposure promotes inflammation in the context of infection.


Mercury Innate immunity Cytokine Coxsackievirus Autoimmunity 



This work was supported by National Institutes of Health [T32 ES07141 and K99/R00 ES015426 to J.F.N.; R01 HL087033 and R01 HL111938 to D.F.] and the Heinz Family Foundation. The authors would like to thank Dr. Sylvia Frisancho-Kiss for her advice on innate flow cytometry.


  1. 1.
    Mahaffey KR, Clickner RP, Bodurow CC. Blood organic mercury and dietary mercury intake: national health and nutrition examination survey, 1999 and 2000. Environ Health Perspect. 2004;112(5):562–70.PubMedCentralPubMedCrossRefGoogle Scholar
  2. 2.
    Gochfeld M. Cases of mercury exposure, bioavailability, and absorption. Ecotoxicol Environ Saf. 2003;56(1):174–9.PubMedCrossRefGoogle Scholar
  3. 3.
    NRC. Toxicological effects of methyl mercury. Washington, DC: National Academy Press; 2000.Google Scholar
  4. 4.
    Cooper GS, Parks CG, Treadwell EL. St Clair EW, Gilkeson GS, Dooley MA. Occupational risk factors for the development of systemic lupus erythematosus. J Rheumatol. 2004;31(10):1928–33.PubMedGoogle Scholar
  5. 5.
    Silva IA, Nyland JF, Gorman A, Perisse A, Ventura AM, Santos EC, et al. Mercury exposure, malaria, and serum antinuclear/antinucleolar antibodies in amazon populations in Brazil: a cross-sectional study. Environ Health. 2004;3(1):11–22.PubMedCentralPubMedCrossRefGoogle Scholar
  6. 6.
    Alves MF, Fraiji NA, Barbosa AC, De Lima DS, Souza JR, Dorea JG, et al. Fish consumption, mercury exposure and serum antinuclear antibody in Amazonians. Int J Environ Health Res. 2006;16(4):255–62.PubMedCrossRefGoogle Scholar
  7. 7.
    Nyland JF, Fillion M, Barbosa F Jr, Shirley DL, Chine C, Lemire M, et al. Biomarkers of methyl mercury exposure immunotoxicity among fish consumers in Amazonian Brazil. Environ Health Perspect. 2011;119:1733–8. doi: 10.1289/ehp.1103741.PubMedCentralPubMedCrossRefGoogle Scholar
  8. 8.
    Gardner RM, Nyland JF, Silva IA, Ventura AM, de Souza JM, Silbergeld EK. Mercury exposure, serum antinuclear/antinucleolar antibodies, and serum cytokine levels in mining populations in Amazonian Brazil: a cross-sectional study. Environ Res. 2010;110(4):345–54. doi: 10.1016/j.envres.2010.02.001.PubMedCentralPubMedCrossRefGoogle Scholar
  9. 9.
    Gallagher CM, Meliker JR. Mercury and thyroid autoantibodies in US women, NHANES 2007–2008. Environ Int. 2012;40:39–43. doi: 10.1016/j.envint.2011.11.014.PubMedCrossRefGoogle Scholar
  10. 10.
    Motts JA, Shirley DL, Silbergeld EK, Nyland JF. Novel biomarkers of mercury-induced autoimmune dysfunction: a cross-sectional study in Amazonian Brazil. Environ Res. 2014;132:12–8. doi: 10.1016/j.envres.2014.03.024.PubMedCrossRefGoogle Scholar
  11. 11.
    Hultman P, Nielsen JB. The effect of dose, gender, and non-H-2 genes in murine mercury-induced autoimmunity. J Autoimmun. 2001;17(1):27–37.PubMedCrossRefGoogle Scholar
  12. 12.
    Monestier M, Losman MJ, Novick KE, Aris JP. Molecular analysis of mercury-induced antinucleolar antibodies in H-2S mice. J Immunol. 1994;152(2):667–75.PubMedGoogle Scholar
  13. 13.
    Nielsen JB, Hultman P. Mercury-induced autoimmunity in mice. Environ Health Perspect. 2002;110(Suppl 5):877–81.PubMedCentralPubMedCrossRefGoogle Scholar
  14. 14.
    Robinson CJ, White HJ, Rose NR. Murine strain differences in response to mercuric chloride: antinucleolar antibodies production does not correlate with renal immune complex deposition. Clin Immunol Immunopathol. 1997;83(2):127–38.PubMedCrossRefGoogle Scholar
  15. 15.
    Pollard KM, Pearson DL, Hultman P, Deane TN, Lindh U, Kono DH. Xenobiotic acceleration of idiopathic systemic autoimmunity in lupus- prone bxsb mice. Environ Health Perspect. 2001;109(1):27–33.PubMedCentralPubMedCrossRefGoogle Scholar
  16. 16.
    Via CS, Nguyen P, Niculescu F, Papadimitriou J, Hoover D, Silbergeld EK. Low-dose exposure to inorganic mercury accelerates disease and mortality in acquired murine lupus. Environ Health Perspect. 2003;111(10):1273–7.PubMedCentralPubMedCrossRefGoogle Scholar
  17. 17.
    Nyland JF, Fairweather D, Shirley DL, Davis SE, Rose NR, Silbergeld EK. Low-dose inorganic mercury increases severity and frequency of chronic coxsackievirus-induced autoimmune myocarditis in mice. Toxicol Sci. 2012;125(1):134–43. doi: 10.1093/toxsci/kfr264.PubMedCentralPubMedCrossRefGoogle Scholar
  18. 18.
    Silbergeld EK, Silva IA, Nyland JF. Mercury and autoimmunity: implications for occupational and environmental health. Toxicol Appl Pharmacol. 2005;207(2 Suppl):282–92.PubMedCrossRefGoogle Scholar
  19. 19.
    Frisancho-Kiss S, Davis SE, Nyland JF, Frisancho JA, Cihakova D, Barrett MA, et al. Cutting edge: cross-regulation by TLR4 and T cell Ig mucin-3 determines sex differences in inflammatory heart disease. J Immunol. 2007;178(11):6710–4.PubMedCrossRefGoogle Scholar
  20. 20.
    Frisancho-Kiss S, Nyland JF, Davis SE, Barrett MA, Gatewood SJ, Njoku DB, et al. Cutting edge: T cell Ig mucin-3 reduces inflammatory heart disease by increasing CTLA-4 during innate immunity. J Immunol. 2006;176(11):6411–5.PubMedCrossRefGoogle Scholar
  21. 21.
    Onyimba JA, Coronado MJ, Garton AE, Kim JB, Bucek A, Bedja D, et al. The innate immune response to coxsackievirus B3 predicts progression to cardiovascular disease and heart failure in male mice. Biol Sex Differ. 2011;2:2. doi: 10.1186/2042-6410-2-2.PubMedCentralPubMedCrossRefGoogle Scholar
  22. 22.
    Lawrence DA, McCabe MJ Jr. Immunomodulation by metals. Int Immunopharmacol. 2002;2(2–3):293–302.PubMedCrossRefGoogle Scholar
  23. 23.
    Fairweather D, Rose NR. Coxsackievirus-induced myocarditis in mice: a model of autoimmune disease for studying immunotoxicity. Methods. 2007;41(1):118–22.PubMedCentralPubMedCrossRefGoogle Scholar
  24. 24.
    Fairweather D, Stafford KA, Sung YK. Update on coxsackievirus B3 myocarditis. Curr Opin Rheumatol. 2012;24(4):401–7. doi: 10.1097/BOR.0b013e328353372d.PubMedCrossRefGoogle Scholar
  25. 25.
    Fairweather D, Yusung S, Frisancho S, Barrett M, Gatewood S, Steele R, et al. IL-12 Receptor beta1 and Toll-Like Receptor 4 Increase IL-1beta- and IL-18-Associated Myocarditis and Coxsackievirus Replication. J Immunol. 2003;170(9):4731–7.PubMedCrossRefGoogle Scholar
  26. 26.
    Fairweather D, Frisancho S, Gatewood S, Njoku D, Steele R, Barrett M, et al. Mast cells and innate cytokines are associated with susceptibility to autoimmune heart disease following Coxsackievirus B3 infection. Autoimmunity. 2004;37:131–45.PubMedCrossRefGoogle Scholar
  27. 27.
    Schiraldi M, Monestier M. How can a chemical element elicit complex immunopathology? Lessons from mercury-induced autoimmunity. Trends Immunol. 2009;30(10):502–9.PubMedCrossRefGoogle Scholar
  28. 28.
    Ilback NG, Wesslen L, Fohlman J, Friman G. Effects of methyl mercury on cytokines, inflammation and virus clearance in a common infection (coxsackie B3 myocarditis). Toxicol Lett. 1996;89(1):19–28.PubMedCrossRefGoogle Scholar
  29. 29.
    Johansson U, Sander B, Hultman P. Effects of the murine genotype on T cell activation and cytokine production in murine mercury-induced autoimmunity. J Autoimmun. 1997;10(4):347–55.PubMedCrossRefGoogle Scholar
  30. 30.
    Kono DH, Balomenos D, Pearson DL, Park MS, Hildebrandt B, Hultman P, et al. The prototypic Th2 autoimmunity induced by mercury is dependent on IFN- gamma and not Th1/Th2 imbalance. J Immunol. 1998;161(1):234–40.PubMedGoogle Scholar
  31. 31.
    Pollard KM, Hultman P. Effects of mercury on the immune system. Met Ions Biol Syst. 1997;34:421–40.PubMedGoogle Scholar
  32. 32.
    Hultman P, Bell LJ, Enestrom S, Pollard KM. Murine susceptibility to mercury. I. Autoantibody profiles and systemic immune deposits in inbred, congenic, and intra-H-2 recombinant strains. Clin Immunol Immunopathol. 1992;65(2):98–109.PubMedCrossRefGoogle Scholar
  33. 33.
    Abedi-Valugerdi M, Nilsson C, Zargari A, Gharibdoost F, DePierre JW, Hassan M. Bacterial lipopolysaccharide both renders resistant mice susceptible to mercury-induced autoimmunity and exacerbates such autoimmunity in susceptible mice. Clin Exp Immunol. 2005;141(2):238–47.PubMedCentralPubMedCrossRefGoogle Scholar
  34. 34.
    Hansson M, Djerbi M, Rabbani H, Mellstedt H, Gharibdoost F, Hassan M, et al. Exposure to mercuric chloride during the induction phase and after the onset of collagen-induced arthritis enhances immune/autoimmune responses and exacerbates the disease in DBA/1 mice. Immunology. 2005;114(3):428–37.PubMedCentralPubMedCrossRefGoogle Scholar
  35. 35.
    Cihakova D, Barin JG, Afanasyeva M, Kimura M, Fairweather D, Berg M, et al. Interleukin-13 protects against experimental autoimmune myocarditis by regulating macrophage differentiation. Am J Pathol. 2008;172(5):1195–208. doi: 10.2353/ajpath.2008.070207.PubMedCentralPubMedCrossRefGoogle Scholar
  36. 36.
    Kaya Z, Afanasyeva M, Wang Y, Dohmen KM, Schlichting J, Tretter T, et al. Contribution of the innate immune system to autoimmune myocarditis: a role for complement. Nat Immunol. 2001;2(8):739–45.PubMedCrossRefGoogle Scholar
  37. 37.
    Fairweather D, Frisancho-Kiss S, Rose NR. Viruses as adjuvants for autoimmunity: evidence from Coxsackievirus-induced myocarditis. Rev Med Virol. 2005;15(1):17–27.PubMedCrossRefGoogle Scholar
  38. 38.
    Bagenstose LM, Class R, Salgame P, Monestier M. B7-1 and B7-2 co-stimulatory molecules are required for mercury-induced autoimmunity. Clin Exp Immunol. 2002;127(1):12–9.PubMedCentralPubMedCrossRefGoogle Scholar
  39. 39.
    Eriksson U, Kurrer MO, Schmitz N, Marsch SC, Fontana A, Eugster HP, et al. Interleukin-6-deficient mice resist development of autoimmune myocarditis associated with impaired upregulation of complement C3. Circulation. 2003;107(2):320–5.PubMedCrossRefGoogle Scholar
  40. 40.
    Fairweather D, Frisancho-Kiss S, Yusung SA, Barrett MA, Davis SE, Steele RA, et al. IL-12 protects against coxsackievirus B3-induced myocarditis by increasing IFN-gamma and macrophage and neutrophil populations in the heart. J Immunol. 2005;174(1):261–9.PubMedCrossRefGoogle Scholar
  41. 41.
    Baldeviano GC, Barin JG, Talor MV, Srinivasan S, Bedja D, Zheng D, et al. Interleukin-17A is dispensable for myocarditis but essential for the progression to dilated cardiomyopathy. Circ Res. 2010;106(10):1646–55.PubMedCrossRefGoogle Scholar
  42. 42.
    Goser S, Ottl R, Brodner A, Dengler TJ, Torzewski J, Egashira K, et al. Critical role for monocyte chemoattractant protein-1 and macrophage inflammatory protein-1alpha in induction of experimental autoimmune myocarditis and effective anti-monocyte chemoattractant protein-1 gene therapy. Circulation. 2005;112(22):3400–7. doi: 10.1161/CIRCULATIONAHA.105.572396.PubMedCrossRefGoogle Scholar
  43. 43.
    Afanasyeva M, Wang Y, Kaya Z, Park S, Zilliox MJ, Schofield BH, et al. Experimental Autoimmune Myocarditis in A/J mice Is an Interleukin-4-Dependent Disease with a Th2 Phenotype. Am J Pathol. 2001;159(1):193–203.PubMedCentralPubMedCrossRefGoogle Scholar
  44. 44.
    Kaya Z, Dohmen KM, Wang Y, Schlichting J, Afanasyeva M, Leuschner F, et al. Cutting edge: a critical role for IL-10 in induction of nasal tolerance in experimental autoimmune myocarditis. J Immunol. 2002;168(4):1552–6.PubMedCrossRefGoogle Scholar
  45. 45.
    Fairweather D, Frisancho-Kiss S, Yusung SA, Barrett MA, Davis SE, Gatewood SJ, et al. Interferon-gamma protects against chronic viral myocarditis by reducing mast cell degranulation, fibrosis, and the profibrotic cytokines transforming growth factor-beta 1, interleukin-1 beta, and interleukin-4 in the heart. Am J Pathol. 2004;165(6):1883–94.PubMedCentralPubMedCrossRefGoogle Scholar
  46. 46.
    Barin JG, Talor MV, Baldeviano GC, Kimura M, Rose NR, Cihakova D. Mechanisms of IFNgamma regulation of autoimmune myocarditis. Exp Mol Pathol. 2010;89(2):83–91. doi: 10.1016/j.yexmp.2010.06.005.PubMedCentralPubMedCrossRefGoogle Scholar
  47. 47.
    Sass JB, Haselow DT, Silbergeld EK. Methylmercury-induced decrement in neuronal migration may involve cytokine-dependent mechanisms: a novel method to assess neuronal movement in vitro. Toxicol Sci. 2001;63(1):74–81.PubMedCrossRefGoogle Scholar
  48. 48.
    Fairweather D, Rose NR. Models of coxsackievirus-B3-induced myocarditis: recent advances. Drug Discov Today Dis Models. 2004;1(4):381–6.CrossRefGoogle Scholar
  49. 49.
    Gardner RM, Nyland JF, Evans SL, Wang SB, Doyle KM, Crainiceanu CM, et al. Mercury induces an unopposed inflammatory response in human peripheral blood mononuclear cells in vitro. Environ Health Perspect. 2009;117(12):1932–8.PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Springer Basel 2014

Authors and Affiliations

  • Kayla L. Penta
    • 1
  • DeLisa Fairweather
    • 2
  • Devon L. Shirley
    • 1
  • Noel R. Rose
    • 3
    • 4
  • Ellen K. Silbergeld
    • 2
  • Jennifer F. Nyland
    • 1
    • 2
  1. 1.Department of Pathology, Microbiology and ImmunologyUniversity of South Carolina, School of MedicineColumbiaUSA
  2. 2.Department of Environmental Health SciencesJohns Hopkins University Bloomberg School of Public HealthBaltimoreUSA
  3. 3.W. Harry Feinstone Department of Molecular Microbiology and ImmunologyJohns Hopkins University Bloomberg School of Public HealthBaltimoreUSA
  4. 4.Department of PathologyJohns Hopkins University School of MedicineBaltimoreUSA

Personalised recommendations