Inflammation Research

, Volume 63, Issue 12, pp 969–977 | Cite as

Colitis generates remote antinociception in rats: the role of the l-arginine/NO/cGMP/PKG/KATP pathway and involvement of cannabinoid and opioid systems

  • André Luiz dos Reis Barbosa
  • Rhamon Barroso de Sousa
  • João Nathanael Lima Torres
  • Thiago Mattar Cunha
  • Fernando de Queiroz Cunha
  • Pedro Marcos Gomes Soares
  • Ronaldo de Albuquerque Ribeiro
  • Mariana Lima Vale
  • Marcellus Henrique Loiola Ponte Souza
Original Research Paper


Objective and design

The aim of this study was to investigate the possible involvement of the NO/cGMP/PKG/K ATP + pathway, cannabinoids and opioids in remote antinociception associated with 2,4,6-trinitrobenzene sulph onic acid (TNBS)-induced colitis.


TNBS-induced colitis was induced by intracolonic administration of 20 mg of TNBS in 50 % ethanol. After induction, carrageenan (500 μg/paw) or prostaglandin (PG) E2 (100 ng/paw) was injected in the rat’s plantar surface and hypersensitivity was evaluated by the electronic von Frey test. Rats were pre-treated with l-Noarg one hour before carrageenan injection. l-Arginine was given 10 min before l-Noarg injections. ODQ, KT 5823, glibenclamide (Glib), naloxone and AM 251 or AM 630 were administered 30 min prior to carrageenan or PGE2 treatments.


Colitis induction by TNBS reduced PGE2 or carrageenan-induced hypersensitivity. Antinociception produced by TNBS-induced colitis was reversed significantly (P < 0.05) by l-Noarg, ODQ, KT 5823, glibenclamide, naloxone, AM251 and AM630 treatments.


TNBS-induced colitis causes antinociception in the rat paw. This disorder appears to be mediated by activation of the NO/cGMP/PKG/KATP pathway, endocannabinoids and endogenous opioids. This information may contribute to a better understanding of peripheral neurological dysfunctions occurring in Crohn’s disease.


TNBS-induced colitis Hypersensitivity NO Opioids Cannabinoids 



The authors gratefully acknowledge the technical assistance of Maria Silvandira Freire França, and we thank UFPI/CNPq for fellowship support.


  1. 1.
    Gondim FAA, Brannagan TH, Sander HW, Chin RL. Peripheral neuropathy in patients with inflammatory bowel disease. Brain. 2005;128:867–79.PubMedCrossRefGoogle Scholar
  2. 2.
    Greenstein AJ, Janowitz HD, Sachar DB. The extra-intestinal complications of Crohn’s disease and ulcerative colitis: a study of 700 patients. Medicine. 1976;55:401–12.PubMedCrossRefGoogle Scholar
  3. 3.
    Gendelman S, Present D, Janowitz HD. Neurological complications of inflammatory bowel disease. Gastroenterology. 1982;82:1065–75.Google Scholar
  4. 4.
    Rankin GB, Watts HD, Melnyk CS, Kelley ML Jr. National cooperative Crohn’s disease study: extraintestinal manifestations and perianal complications. Gastroenterology. 1979;77:914–20.PubMedGoogle Scholar
  5. 5.
    Lossos A, River Y, Eliakim A, Steiner I. Neurologic aspects of inflammatory bowel disease. Neurology. 1995;45:416–21.PubMedCrossRefGoogle Scholar
  6. 6.
    Elsehety A, Bertorini TE. Neurologic and neuropsychiatric complications of Crohn’s disease. S Med J. 1997;90:606–10.CrossRefGoogle Scholar
  7. 7.
    Richard JT, Wang G. Colonic inflammation decreases thermal sensitivity of the forepaw and hindpaw in the rat. Neurosci Lett. 2004;359:81–4.CrossRefGoogle Scholar
  8. 8.
    Chandler MJ, Qin C, Zhang J, Foreman RD. Differential effects of urinary bladder distension on high cervical projection neurons in primates. Brain Res. 2002;949:97–104.PubMedCrossRefGoogle Scholar
  9. 9.
    Ness TJ, Gebhart GF. Interactions between visceral and cutaneous nociception in the rat. Noxious cutaneous stimuli inhibit visceral nociceptive neurons and reflexes. J Neurophysiol. 1991;66:20–8.PubMedGoogle Scholar
  10. 10.
    Qin C, Chandler MJ, Foreman RD. Effects of urinary bladder distension on activity of T3–T4 spinal neurons receiving cardiac and somatic noxious inputs in rats. Brain Res. 2003;971:210–20.PubMedCrossRefGoogle Scholar
  11. 11.
    Traub RJ, Wang G. Colonic inflammation decreases thermal sensitivity of the forepaw and hindpaw in the rat. Neurosci Lett. 2004;359:81–4.PubMedCrossRefGoogle Scholar
  12. 12.
    Wise LE, Cannavacciulo R, Cravatt BF. Evaluation of fatty acid amides in the carrageenan-induced paw edema model. Neuropharmacology. 2008;54:181–8.PubMedCentralPubMedCrossRefGoogle Scholar
  13. 13.
    Reis GML, Pacheco D, Perez AC. Opioid receptor and NO/cGMP pathway as a mechanism of peripheral antinociceptive action of the cannabinoid receptor agonist anandamide. Life Sci. 2009;85:351–6.PubMedCrossRefGoogle Scholar
  14. 14.
    Reis GML, Ramos MA, Pacheco DF. Endogenous cannabinoid receptor agonist anandamide induces peripheral antinociception by activation of ATP-sensitive K+ channels. Life Sci. 2011;88:653–7.PubMedCrossRefGoogle Scholar
  15. 15.
    Cunha TM, Roman-Campos D, Lotufo CM, et al. Morphine peripheral analgesia depends on activation of the PI3Kgamma/AKT/nNOS/NO/KATP signaling pathway. Proc Natl Acad Sci. 2010;107:4442–7.PubMedCentralPubMedCrossRefGoogle Scholar
  16. 16.
    Cunha TM, Verri WA, Vivancos GG. An electronic pressure-meter nociception paw test for mice. Braz J Med Biol Res. 2004;37:401–7.PubMedCrossRefGoogle Scholar
  17. 17.
    Stahlberg D, Barany F, Einarsson K. Neurophysiologic studies of patients with Crohn’s disease on long-term treatment with metronidazole. Scand J Gastroenterol. 1991;26:219–24.PubMedCrossRefGoogle Scholar
  18. 18.
    Cunha TM, Verri WAJr, Parada CA, et al. Hypernociceptive role of cytokines and chemokines: targets for analgesic drug development? Pharmacol Ther. 2006;112:116–38.PubMedCrossRefGoogle Scholar
  19. 19.
    DiRosa M, Giroud JP, Willoughby DA. Studies on acute inflammatory response mediators induced in rats in different sites by carrageenan and turpentine. J Pathol. 1971;104:15–29.CrossRefGoogle Scholar
  20. 20.
    Soares AC, Leite R, Tatsuo MAKF, et al. Activation of ATP-sensitive K+ channels : mechanism of peripheral antinociceptive action of the nitric oxide donor, sodium nitroprusside. Eur J Pharmacol. 2000;400:67–71.PubMedCrossRefGoogle Scholar
  21. 21.
    Rachmilewitz D, Stamler JS, Bachwich D, et al. Enhanced colonic nitric oxide generation and nitric oxide synthase activity in ulcerative colitis and Crohn’s disease. Gut. 1995;36:718–23.PubMedCentralPubMedCrossRefGoogle Scholar
  22. 22.
    Roediger WEW, Lawson MJ, Nance SH, et al. Detectable colonic nitrite levels in inflammatory bowel disease—mucosal or bacterial malfunction? Digestion. 1986;35:199–204.PubMedCrossRefGoogle Scholar
  23. 23.
    Oudkerk-Pool M, Bouma G, Visser JJ. Serum nitrate levels in ulcerative colitis and Crohn’s disease. Scand J Gastroenterol. 1995;30:784–8.PubMedCrossRefGoogle Scholar
  24. 24.
    Geboes K, Mebis J, Rutgeers P, et al. Demonstration of nitric oxide positive neurons in Crohn’s disease. Gastroenterology. 1993;104:705–10.Google Scholar
  25. 25.
    Guslandi M. Nitric oxide and inflammatory bowel diseases. Eur J Clin Invest. 1998;28:904–7.PubMedCrossRefGoogle Scholar
  26. 26.
    Levine JJ, Pettei MJ, Valderrama E. Nitric oxide sand inflammatory bowel disease: evidence for local intestinal production in children with active colonic disease. J Ped Gastroenterol Nutr. 1998;26:34–8.CrossRefGoogle Scholar
  27. 27.
    Boughton-Smith NK, Evans SM, Hawkey CJ. Nitric oxide synthase activity in ulcerative colitis and Crohn’s disease. Lancet. 1993;342:338–40.PubMedCrossRefGoogle Scholar
  28. 28.
    Singer II, Kawka DW, Scott S. Expression of inducible nitric oxide synthase and nitrotyrosine in colonic epithelium in inflammatory bowel disease. Gastroenterology. 1996;111:871–85.PubMedCrossRefGoogle Scholar
  29. 29.
    Miller MJS, Xhang XJ, Sadowska-Krowicka H. Nitric oxide release in response to gut injury. Scand J Gastroenterol. 1993;28:149–54.PubMedCrossRefGoogle Scholar
  30. 30.
    Brito GAC, Sachs D, Cunha FQ, et al. Peripheral antinociceptive effect of pertussis toxin: activation of the arginine/NO/cGMP/PKG/TP-sensitive K+ channel pathway. Eur J Neurosci. 2006;24:1175–81.PubMedCrossRefGoogle Scholar
  31. 31.
    Sachs D, Cunha FQ, Ferreira SH. Peripheral analgesic blockade of hypersensitivity: activation of arginine/NO/cGMP/protein kinase G/ATP-sensitive K+channel pathway. PNAS. 2004;101:3680–5.PubMedCentralPubMedCrossRefGoogle Scholar
  32. 32.
    Moncada S, Palmer RM, Higgs EA. Nitric oxide: physiology, pathophysiology, and pharmacology. Pharmacol Rev. 1991;43:109–42.PubMedGoogle Scholar
  33. 33.
    Goldberg ND, Haddox MK, Nicol SE. Biologic regulation through opposing influences of cyclic GMP and cyclic AMP: the Yin Yang hypothesis. Adv Cyclic Nucleotide Res. 1975;5:307–30.PubMedGoogle Scholar
  34. 34.
    Granados-Soto V, Flores-Murrieta FJ, Castaneda-Hernandez G, et al. Evidence for the involvement of nitric oxide in the antinociceptive effect of ketorolac. Eur J Pharmacol. 1995;277:281–4.PubMedCrossRefGoogle Scholar
  35. 35.
    Lorenzetti BB, Ferreira SH. Activation of the arginine-nitric oxide pathway in primary sensory neurons contributes to dipyrone-induced spinal and peripheral analgesia. Inflamm Res. 1996;45:308–11.PubMedCrossRefGoogle Scholar
  36. 36.
    Han J, Kim N, Kim E, et al. Modulation of ATP-sensitive K+ channels by cGMP-dependent protein kinase in rabbit ventricular myocytes. J Biol Chem. 2001;276:22140–7.PubMedCrossRefGoogle Scholar
  37. 37.
    Han J, Kim N, Joo H, et al. ATP-sensitive K+ channel activation by nitric oxide and protein kinase G in rabbit ventricular myocytes. Am J Physiol Heart Circ Physiol. 2002;283:1545–54.Google Scholar
  38. 38.
    Segawa K, Minami K, Shiga Y, et al. Inhibitory effects of nicorandil on rat mesangial cell proliferation via the protein kinase G pathway. Nephron. 2001;87:263–8.PubMedCrossRefGoogle Scholar
  39. 39.
    Cichewicz DL. Synergistic interactions between cannabinoid and opioid analgesics. Life Sci. 2004;74:1317–24.PubMedCrossRefGoogle Scholar
  40. 40.
    Howlett AC, Barth F, Bonner TI. Classification of cannabinoid receptors. Pharmacol Rev. 2002;54:161–202.PubMedCrossRefGoogle Scholar
  41. 41.
    Vigano D, Rubino T, Parolaro D. Molecular and cellular basis of cannabinoid and opioid interactions. Pharmacol Biochem Behav. 2005;81:360–8.PubMedCrossRefGoogle Scholar
  42. 42.
    Alhouayek M, Lambert DM, Delzenne NM. Increasing endogenous 2-arachidonoylglycerol levels counteracts colitis and related systemic inflammation. Faseb J. 2011;25:2711–21.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Basel 2014

Authors and Affiliations

  • André Luiz dos Reis Barbosa
    • 1
    • 2
  • Rhamon Barroso de Sousa
    • 2
  • João Nathanael Lima Torres
    • 2
  • Thiago Mattar Cunha
    • 3
  • Fernando de Queiroz Cunha
    • 3
  • Pedro Marcos Gomes Soares
    • 4
  • Ronaldo de Albuquerque Ribeiro
    • 2
  • Mariana Lima Vale
    • 2
  • Marcellus Henrique Loiola Ponte Souza
    • 2
  1. 1.LAFFEX Laboratory of Experimental Physiopharmacology, School of Physiotherapy, Biotechnology and Biodiversity Center Research (BIOTEC)Federal University of Piauí-CMRVParnaíbaBrazil
  2. 2.LAFICA Laboratory of Pharmacology of Inflammation and Cancer, Department of Physiology and PharmacologyFederal University of CearáFortalezaBrazil
  3. 3.Laboratory of Inflammation and Pain, Department of PharmacologyRibeirão Preto Medical SchoolRibeirão PretoBrazil
  4. 4.Department of Morphology, NEMPI Center for Microscopy and image processingFederal University of CearáFortalezaBrazil

Personalised recommendations