Inflammation Research

, Volume 63, Issue 6, pp 451–462 | Cite as

Swertiamarin ameliorates inflammation and osteoclastogenesis intermediates in IL-1β induced rat fibroblast-like synoviocytes

  • S. Saravanan
  • V. I. Hairul Islam
  • K. Thirugnanasambantham
  • N. Pazhanivel
  • N. Raghuraman
  • M. Gabriel Paulraj
  • S. Ignacimuthu
Original Research Paper


Objective and design

Rheumatoid arthritis is a chronic inflammatory and autoimmune disease that leads to aggressive joint cartilage and bone destruction. Swertiamarin is a secoiridoid glycoside found in Enicostema axillare (Lam) A. Raynal, a medicinal plant used in the Indian system of traditional medicine. In the present study, the potential of swertiamarin was evaluated in IL-1β induced fibroblast-like synoviocytes (FLS).


The FLS were isolated from Freund’s Complete Adjuvant induced arthritic (AA) rats and cultured with IL-1β. The normal FLS and AA-FLS were cultured and used for subsequent experiment in fibroblastic morphology form. The efficacy of swertiamarin (10–50 μg/ml) was evaluated on mRNA and protein expression levels of inflammatory and osteoclastogenesis mediators. The efficacy was also evaluated on p38 MAPKα levels with time course studies (2, 4, 6, 8 and 12 h).


IL-1β induced cell proliferation (149.46 ± 13.73 %) and NO production (162.03 ± 11.03 %) in AA-FLS; treatment with swertiamarin controlled proliferation (82.77 ± 4.22 %) and NO production (82.06 ± 3.91 % at 50 μg/ml) in a dose-dependent manner. It also significantly (P < 0.05) modulated the expression of apoptotic marker (caspase 3), proinflammation mediators (TNFα, IL-6, PGE2, COX-2, iNOS, MMPs) and osteoclastogenic mediator (RANKL) at both the mRNA and protein levels. Treatment with swertiamarin inhibited the levels of p38 MAPKα in a dose-dependent manner and also significantly (P < 0.05) attenuated the release of the same in time dependent mode.


These findings suggest that treatment with swertiamarin attenuated IL-1β induced FLS, and it revealed anti-inflammatory potential by attenuating aggressive FLS.


Fibroblast-like synoviocytes Inflammation Bone erosion Swertiamarin Anti-inflammatory agent 



Financial assistance in the form of a Senior Research Fellowship given by Indian Council for Medical Research (No. 45/81/2011/BMS/TRM), New Delhi to the first author is gratefully acknowledged. We thank the Entomology Research Institute, Loyola College, Chennai for financial assistance.

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    Bartok B, Firestein GS. Fibroblast-like synoviocytes: key effector cells in rheumatoid arthritis. Immunol Rev. 2010;233(1):233–55.PubMedCentralPubMedCrossRefGoogle Scholar
  2. 2.
    Shankar S, Handa R. Bone Health in Asian women with rheumatoid arthritis. US Musculoskelet Rev. 2010;5:33–5.Google Scholar
  3. 3.
    Firestein GS. Etiology and pathogenesis of rheumatoid arthritis. In: Firestein GS, Budd RC, Harris T, McInnes IB, Ruddy S, Sergent JS, editors. Kelly’s textbook of rheumatology 8. Philadelphia: Saunders Elsevier; 2009. p. 1035–86.CrossRefGoogle Scholar
  4. 4.
    Mountz JD, Zhang HG. Regulation of apoptosis of synovial fibroblasts. Curr Dir Autoimmun. 2001;3:216–39.PubMedCrossRefGoogle Scholar
  5. 5.
    Schett G, Gravallese E. Bone erosion in rheumatoid arthritis: mechanisms, diagnosis and treatment. Nat Rev Rheumatol. 2012;8(11):656–64.PubMedCrossRefGoogle Scholar
  6. 6.
    Lee S-J, Nam W-D, Na H-J, Cho Y-L, Ha K-S, Hwang J-Y, Lee H, Kim S-O, Kwon Y-G, Kim Y-M. CT20126, a novel immunosuppressant, prevents collagen-induced arthritis through the down-regulation of inflammatory gene expression by inhibiting NF-kB activation. Biochem Pharmacol. 2008;76:79–90.PubMedCrossRefGoogle Scholar
  7. 7.
    Takayanagi H. Inflammatory bone destruction and osteoimmunology. J Periodontal. 2005;40(4):287–93.CrossRefGoogle Scholar
  8. 8.
    Korb A, Tohidast-Akrad M, Cetin E, Axmann R, Smolen J, Schett G. Differential tissue expression and activation of p38 MAPK alpha, beta, gamma, and delta isoforms in rheumatoid arthritis. Arthritis Rheum. 2006;54:2745–56.PubMedCrossRefGoogle Scholar
  9. 9.
    Mbalaviele G, Anderson G, Jones A, Ciechi PD, Settle S, Mnich S, Thiede M, Abu-Amer Y, Portanova J, Monahan J. Inhibition of p38 mitogenactivated protein kinase prevents inflammatory bone destruction. J Pharmacol Exp Ther. 2006;317:1044–53.PubMedCrossRefGoogle Scholar
  10. 10.
    Huh J-E, Hong J-M, Baek Y-H, Lee J-D, Choi D-Y, Park D-S. Anti-inflammatory and anti-nociceptive effect of Betula platyphylla var. japonica in human interleukin-1β-stimulated fibroblast-like synoviocytes and in experimental animal models. J Ethnopharmacol. 2011;135:126–34.PubMedCrossRefGoogle Scholar
  11. 11.
    Magora HB, Rahman MM, Gray AI, Cole MD. Swertiamarin from Enicostemma axillere subsp. axillere (Gentianaceae). Biochem Syst Ecol. 2003;31:553–5.CrossRefGoogle Scholar
  12. 12.
    Saravanan S, Prakash Babu N, Pandikumar P, Gabriel Paulraj M, Karunairaj M, Ignacimuthu S. Immunomodulatory potential of Enicostema axillare (Lam.) A. Raynal, a traditional medicinal Plant. J Ethnopharmacol. 2012;140:239–46.PubMedCrossRefGoogle Scholar
  13. 13.
    Vaidya H, Giri S, Jain M, Goyal R. Decrease in serum matrix metalloproteinase-9 and matrix metalloproteinase-3 levels in Zucker fa/fa obese rats after treatment with swertiamarin. Exp Clin Cardiol. 2012;17(1):12–6.PubMedCentralPubMedGoogle Scholar
  14. 14.
    Jaishree V, Badami S. Antioxidant and hepatoprotective effect of swertiamarin from Enicostemma axillare against D-galactosamine induced acute liver damage in rats. J Ethnopharmacol. 2010;130(1):103–6.PubMedCrossRefGoogle Scholar
  15. 15.
    Jaishree V, Badami S, Rupesh Kumar M, Tamizhmani T. Antinociceptive activity of swertiamarin isolated from Enicostemma axillare. Phytomedicine. 2009;16(2–3):227–32.PubMedCrossRefGoogle Scholar
  16. 16.
    Vaijanathappa J, Badami S. Antiedematogenic and free radical scavenging activity of swertiamarin isolated from Enicostemma axillare. Planta Med. 2009;75(1):12–7.PubMedCrossRefGoogle Scholar
  17. 17.
    Park KS, Kim BH, Chang IM. Inhibitory potencies of several iridoids on cyclooxygenase-1, cyclooxygnase-2 enzymes activities, tumor necrosis factor-α and nitric oxide production in vitro. Evid Based Compl Alt. 2010;7(1):41–5.CrossRefGoogle Scholar
  18. 18.
    Wei S, Chen G, He W, Chi H, Abe H, Yamashita K, Yokoyama M, Kodama H. Inhibitory effects of secoiridoids from the roots of Gentiana straminea on stimulus-induced superoxide generation, phosphorylation and translocation of cytosolic compounds to plasma membrane in human neutrophils. Phytother Res. 2012;26(2):168–73.PubMedCrossRefGoogle Scholar
  19. 19.
    Kimura Y, Sumiyoshi M. Effects of Swertia japonica extract and its main compound swertiamarin on gastric emptying and gastrointestinal motility in mice. Fitoterapia. 2011;82(6):827–33.PubMedCrossRefGoogle Scholar
  20. 20.
    Hou Y, Wu J, Huang Q, Guo L. Luteolin inhibits proliferation and affects the function of stimulated rat synovial fibroblasts. Cell Biol Int. 2009;33:135–47.PubMedCrossRefGoogle Scholar
  21. 21.
    Yang XY, Liu CH, Liang X, Sun J. Effects of mineralization liquid on rat’s osteoblast proliferation and differentiation. Hua Xi Kou Qiang Yi Xue Za Zhi (West China J stomatol). 2008;26:656–9.Google Scholar
  22. 22.
    Ignacio SRN, Ferreira JLP, Almeida MB, Kubelka CF. Nitric oxide production by murine peritoneal macrophages in vitro and in vivo treated with Phyllanthus tenellus extracts. J Ethnopharmacol. 2001;74:181–7.PubMedCrossRefGoogle Scholar
  23. 23.
    Adbul BH, Al-Zubairi AS, Tailan ND. Anticancer activity of natural compound (Zerumbone) extracted from Zingiber zerumbet in human HeLa cervical cancer cells. Int J Pharm. 2008;4(3):160–8.CrossRefGoogle Scholar
  24. 24.
    Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2−∆∆CT method. Methods. 2001;25:402–8.PubMedCrossRefGoogle Scholar
  25. 25.
    Muller-Ladner U, Ospelt C, Gay S, Distler O, Pap T. Cells of the synovium in rheumatoid arthritis. Arthritis Res Ther. 2007;9:223.PubMedCentralPubMedCrossRefGoogle Scholar
  26. 26.
    Söderlin MK, Kautiainen H, Skogh T, Leirisalo-Repo M. Quality of life and economic burden of illness in very early arthritis. Population based study in southern Sweden. J Rheumatol. 2004;31:1717–22.PubMedGoogle Scholar
  27. 27.
    Lee JI, Burckart GJ. Nuclear factor kappa B: important transcription factor and therapeutic target. J Clin Pharmacol. 1998;38:981–93.PubMedCrossRefGoogle Scholar
  28. 28.
    Makarov SS. NF-kB in rheumatoid arthritis: a pivotal regulator of inflammation, hyperplasia, and tissue destruction. Arthritis Res. 2001;3:200–6.PubMedCentralPubMedCrossRefGoogle Scholar
  29. 29.
    Verpoorte R. Exploration of nature’s chemodiversity: the role of secondary metabolites as leads in drug development. Drug Discov Today. 1999;3:232–8.CrossRefGoogle Scholar
  30. 30.
    Li R, Cai L, Xie X-F, Peng L, Li J. 7,3′-dimethoxy hesperetin induces apoptosis of fibroblast-like synoviocytes in rats with adjuvant arthritis through caspase 3 activation. Phytother Res. 2010;24:1850–6.PubMedCrossRefGoogle Scholar
  31. 31.
    Ospelt C, Neidhart M, Gay RE, Gay S. Synovial activation in rheumatoid arthritis. Front Biosci. 2004;9:2323–34.PubMedCrossRefGoogle Scholar
  32. 32.
    Seemayer CA, Neidhart M, Jungel A, Gay RE, Gay S. Synovial fibroblasts in joint destruction of rheumatoid arthritis. Drug Discov Today Dis Mech. 2005;2:359–65.CrossRefGoogle Scholar
  33. 33.
    Du C, Fang M, Li Y, Li L, Wang X. Smac, a mitochondrial protein that promotes cytochrome c-dependent caspase activation by eliminating IAP inhibition. Cell. 2000;102:33–42.PubMedCrossRefGoogle Scholar
  34. 34.
    Porter AG, Janicke RU. Emerging roles of caspase-3 in apoptosis. Cell Death Differ. 1999;6:99–104.PubMedCrossRefGoogle Scholar
  35. 35.
    Goldring SR. Pathogenesis of bone and cartilage destruction in rheumatoid arthritis. Rheumatology. 2003;42:11–6.CrossRefGoogle Scholar
  36. 36.
    McInnes IB, Schett G. Cytokines in the pathogenesis of rheumatoid arthritis. Nat Rev Immunol. 2007;7:429–42.PubMedCrossRefGoogle Scholar
  37. 37.
    Pfeilschifter J, Koditz R, Pfohl M, Schatz H. Changes in proinflammatory cytokine activity after menopause. Endocr Rev. 2002;23:90–119.PubMedCrossRefGoogle Scholar
  38. 38.
    Murakami M, Nishimoto N. Osteoimmunology-basic principles and clinical applications-inflammatory cytokines in rheumatoid arthritis. Clin Calcium. 2012;22(11):1737–46.PubMedGoogle Scholar
  39. 39.
    Gay S, Kuchen S, Gay RE, Neidhart M. Cartilage destruction in rheumatoid arthritis. Ann Rheum Dis. 2002;61(2):87.Google Scholar
  40. 40.
    Choi EM, Lee YS. Luteolin suppresses IL-1β-induced cytokines and MMPs production via p38 MAPK, JNK, NF-kappaB and AP-1 activation in human synovial sarcoma cell line, SW982. Food Chem Toxicol. 2010;48:2607–11.PubMedCrossRefGoogle Scholar
  41. 41.
    Lin N, Liu C, Xia C, Jia H, Imada K, Wu H, Ito A. Triptolide, a diterpenoid triepoxide, suppresses inflammation and cartilage destruction in collagen-induced arthritis mice. Biochem Pharmacol. 2007;73:136–46.PubMedCrossRefGoogle Scholar
  42. 42.
    Seibert K, Zhang Y, Leahy K, Hauser S, Masferrer J, Perkins W, Lee L, Isakson P. Pharmacological and biochemical demonstration of the role of cyclooxygenase-2 in inflammation and pain. P Natl Acad Sci USA. 1994;91:12013–7.CrossRefGoogle Scholar
  43. 43.
    Kim JY, Lee EY, Lee EB, Lee YJ, Yoo HJ, Choi J, Song YW. Atorvastatin inhibit osteoclastogenesis by decreasing the expression of RANKL in the synoviocytes of rheumatoid arthritis. Arthritis Res Ther. 2012;14:R187.PubMedCentralPubMedCrossRefGoogle Scholar
  44. 44.
    Lee HY, Jeon HS, Song EK, Han MK, Park SI, Lee SI, Yun HJ, Kim JR, Kim JS, Lee YC, Kim SI, Kim HR, Choi JY, Kang I, Kim HY, Yoo WH. CD40 ligation of rheumatoid synovial fibroblasts regulates RANKL-mediated osteoclastogenesis: evidence of NF-kappaB-dependent, CD40-mediated bone destruction in rheumatoid arthritis. Arthritis Rheum. 2006;54:1747–58.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Basel 2014

Authors and Affiliations

  • S. Saravanan
    • 1
  • V. I. Hairul Islam
    • 2
    • 3
  • K. Thirugnanasambantham
    • 3
  • N. Pazhanivel
    • 4
  • N. Raghuraman
    • 5
  • M. Gabriel Paulraj
    • 1
  • S. Ignacimuthu
    • 1
    • 2
  1. 1.Division of Ethnopharmacology, Entomology Research InstituteLoyola CollegeChennaiIndia
  2. 2.Division of Microbiology, Entomology Research InstituteLoyola CollegeChennaiIndia
  3. 3.Pondicherry Centre for Biological SciencesPondicherryIndia
  4. 4.Department of Veterinary PathologyMadras Veterinary CollegeChennaiIndia
  5. 5.Central Research LaboratoryMeenakshiammal Dental CollegeChennaiIndia

Personalised recommendations