Skip to main content
Log in

The antagonistic effect of the sigma 1 receptor ligand (+)-MR200 on persistent pain induced by inflammation

  • Original Research Paper
  • Published:
Inflammation Research Aims and scope Submit manuscript

Abstract

Objective and design

The sigma 1 (σ1) receptor, which is widely distributed in the CNS in areas that are known to be important for pain control, may play a role in persistent pain characterized by the hypersensitivity of nociceptive transmission. Here, we investigated the effect of σ1 blockade in an inflammatory pain model.

Treatment and methods

An intraplantar injection of carrageenan (2 %) was used to induce paw inflammation. The effects of the σ1 antagonist (+)-MR200, given subcutaneously at a dose of 0.1, 0.25, 0.5,1, 1.5, and 2 mg/kg prior to injection of carrageenan, on inflammatory pain and inflammation were assessed. Mechanical allodynia with von Frey filaments, thermal hyperalgesia with the plantar test and edema evaluation with a plethysmometer were measured. Intergroup comparisons were assessed by one- or two-way analysis of variance when appropriate, followed by post-hoc tests (Dunnett’s test for one-way or Bonferroni for two-way ANOVA).

Results

(+)-MR200 dose-dependently prevented allodynia and hyperalgesia induced by carrageenan. Furthermore, it reduced paw edema with a significant inhibition percentage of 37.82 % at 3 h after carrageenan treatment.

Conclusions

The blockade of the σ1 receptor with the selective antagonist (+)-MR200 may contribute to the suppression of the typical symptoms of inflammatory pain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Martin WR, Eades CG, Thompson JA, Huppler RE, Gilbert PE. The effects of morphine and nalorphine-like drugs in the non dependent and morphine-dependent chronic spinal dog. J Pharmacol Exp Ther. 1976;197:517–32.

    CAS  PubMed  Google Scholar 

  2. Cobos EJ, Entrena JM, Nieto FR, Cendán CM, Del Pozo E. Pharmacology and therapeutic potential of sigma (1) receptor ligands. Curr Neuropharmacol. 2008;6:344–66.

    Article  CAS  PubMed  Google Scholar 

  3. Guitart X, Codony X, Monroy X. Sigma receptors: biology and therapeutic potential. Psychopharmacology. 2004;174:301–19.

    Article  CAS  PubMed  Google Scholar 

  4. Maurice T, Su TP. The pharmacology of sigma-1 receptors. Pharmacol Ther. 2009;124:195–206.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Banister SD, Kassiou M. The therapeutic potential of sigma (σ) receptors for the treatment of central nervous system diseases: evaluation of the evidence. Curr Pharm Des. 2012;18:884–901.

    Article  CAS  PubMed  Google Scholar 

  6. Zamanillo D, Romero L, Merlos M, Vela JM. Sigma 1 receptor: a new therapeutic target for pain. Eur J Pharmacol. 2013;. doi:10.1016/j.ejphar.2013.01.068.

    Google Scholar 

  7. Vidal-Torres A, de la Puente B, Rocasalbas M, Touriño C, Andreea Bura S, Fernández-Pastor B, Romero L, Codony X, Zamanillo D, Buschmann H, Merlos M, Manuel Baeyens J, Maldonado R, Vela JM. Sigma-1 receptor antagonism as opioid adjuvant strategy: enhancement of opioid antinociception without increasing adverse effects. Eur J Pharmacol. 2013;711:63–72.

    Article  CAS  PubMed  Google Scholar 

  8. Entrena JM, Cobos EJ, Nieto FR, Cendán CM, Gris G, Del Pozo E, Zamanillo D, Baeyens JM. Sigma-1 receptors are essential for capsaicin-induced mechanical hypersensitivity: studies with selective sigma-1 ligands and sigma-1 knockout mice. Pain. 2009;143:252–61.

    Article  CAS  PubMed  Google Scholar 

  9. Chien CC, Pasternak GW. Functional antagonism of morphine analgesia by (+)-pentazocine: evidence for an anti-opioid sigma 1 system. Eur J Pharmacol. 1993;250:R7–8.

    Article  CAS  PubMed  Google Scholar 

  10. Alonso G, Phan V, Guillemain I, Saunier M, Legrand A, Anoal M, Maurice T. Immunocytochemical localization of the sigma (1) receptor in the adult rat central nervous system. Neuroscience. 2000;97:155–70.

    Article  CAS  PubMed  Google Scholar 

  11. Kitaichi K, Chabot JG, Moebius FF, Flandorfer A, Glossmann H, Quirion R. Expression of the purported sigma (1) (sigma (1)) receptor in the mammalian brain and its possible relevance in deficits induced by antagonism of the NMDA receptor complex as revealed using an antisense strategy. J Chem Neuroanat. 2000;20:375–87.

    Article  CAS  PubMed  Google Scholar 

  12. Chien CC, Pasternak GW. Selective antagonism of opioid analgesia by a sigma system. J Pharmacol Exp Ther. 1994;271:1583–90.

    CAS  PubMed  Google Scholar 

  13. Mei J, Pasternak GW. Modulation of brainstem opiate analgesia in the rat by sigma 1 receptors: a microinjection study. J Pharmacol Exp Ther. 2007;322:1278–85.

    Article  CAS  PubMed  Google Scholar 

  14. Prezzavento O, Parenti C, Marrazzo A, Ronsisvalle S, Vittorio F, Aricò G, Scoto GM, Ronsisvalle G. A new sigma ligand (±)-PPCC, antagonizes kappa opioid receptor-mediated antinociceptive effect. Life Sci. 2008;82:549–53.

    Article  CAS  PubMed  Google Scholar 

  15. Marrazzo A, Prezzavento O, Pasquinucci L, Vittorio F, Ronsisvalle G. Synthesis and pharmacological evaluation of potent and enantioselective sigma 1, and sigma 2 ligands. Farmaco. 2001;56:181–9.

    Article  CAS  PubMed  Google Scholar 

  16. Chien CC, Pasternak GW. Sigma antagonists potentiate opioid analgesia in rats. Neurosci Lett. 1995;190:137–9.

    Article  CAS  PubMed  Google Scholar 

  17. Mei J, Pasternak GW. Sigma 1 receptor modulation of opioid analgesia in the mouse. J Pharmacol Exp Ther. 2002;300:1070–4.

    Article  CAS  PubMed  Google Scholar 

  18. Cendán CM, Pujalte JM, Portillo-Salido E, Montoliu L, Baeyens JM. Formalin-induced pain is reduced in sigma (1) receptor knockout mice. Eur J Pharmacol. 2005;511:73–4.

    Article  PubMed  Google Scholar 

  19. Cendán CM, Pujalte JM, Portillo-Salido E, Baeyens JM. Antinociceptive effects of haloperidol and its metabolites in the formalin test in mice. Psychopharmacology. 2005;182:485–93.

    Article  PubMed  Google Scholar 

  20. Kidd BL, Urban LA. Mechanisms of inflammatory pain. Br J Anaesth. 2001;87:3–11.

    Article  CAS  PubMed  Google Scholar 

  21. Parenti C, Aricò G, Ronsisvalle G, Scoto GM. Supraspinal injection of substance P attenuates allodynia and hyperalgesia in a rat model of inflammatory pain. Peptides. 2012;34:412–8.

    Article  CAS  PubMed  Google Scholar 

  22. Laskin DL, Pendino KJ. Macrophages and inflammatory mediators in tissue injury. Annu Rev Pharmacol Toxicol. 1995;35:655–77.

    Article  CAS  PubMed  Google Scholar 

  23. Dixon WJ. Efficient analysis of experimental observations. Annu Rev Pharmacol Toxicol. 1980;20:441–62.

    Article  CAS  PubMed  Google Scholar 

  24. Hargreaves K, Dubner R, Brown F, Flores C, Joris J. A new and sensitive method for measuring thermal nociception in cutaneous hyperalgesia. Pain. 1988;32:77–88.

    Article  CAS  PubMed  Google Scholar 

  25. Winter CA, Risley EA, Nuss GW. Carrageenin-induced edema in hind paw of the rat as an assay for antiiflammatory drugs. Proc Soc Exp Biol Med. 1962;111:544–7.

    Article  CAS  PubMed  Google Scholar 

  26. Katz WA, Bjorkman DJ, Fendrick AM, Hauser WA, Heaton AH, Manning DC, Morgan GJ, Porter GA, Raffa RB, Singh G. Challenges and progress in managing chronic pain. Analgesia. 1999;4:483–504.

    CAS  Google Scholar 

  27. de la Puente B, Nadal X, Portillo-Salido E, Sánchez-Arroyos R, Ovalle S, Palacios G, Muro A, Romero L, Entrena JM, Baeyens JM, López-García JA, Maldonado R, Zamanillo D, Vela JM. Sigma-1 receptors regulate activity-induced spinal sensitization and neuropathic pain after peripheral nerve injury. Pain. 2009;145:294–303.

    Article  PubMed  Google Scholar 

  28. Roh DH, Kim HW, Yoon SY, Seo HS, Kwon YB, Kim KW, Han HJ, Beitz AJ, Na HS, Lee JH. Intrathecal injection of the sigma (1) receptor antagonist BD 1047 blocks both mechanical allodynia and increases in spinal NR1 expression during the induction phase of rodent neuropathic pain. Anesthesiology. 2008;109:879–89.

    Article  CAS  PubMed  Google Scholar 

  29. Nieto FR, Cendán CM, Sánchez-Fernández C, Cobos EJ, Entrena JM, Tejada MA, Zamanillo D, Vela JM, Baeyens JM. Role of sigma-1 receptors in paclitaxel-induced neuropathic pain in mice. J Pain. 2012;13:1107–21.

    Article  CAS  PubMed  Google Scholar 

  30. Rosland JH, Tjølsen A, Maehle B, Hole K. The formalin test in mice: effect of formalin concentration. Pain. 1990;42:235–42.

    Article  CAS  PubMed  Google Scholar 

  31. Coderre TJ, Melzack R. The contribution of excitatory amino acids to central sensitization and persistent nociception after formalin-induced tissue injury. J Neurosci. 1992;12:3665–70.

    CAS  PubMed  Google Scholar 

  32. Romero L, Zamanillo D, Nadal X, Sánchez-Arroyos R, Rivera-Arconada I, Dordal A, Montero A, Muro A, Bura A, Segalés C, Laloya M, Hernández E, Portillo-Salido E, Escriche M, Codony X, Encina G, Burgueño J, Merlos M, Baeyens JM, Giraldo J, López-García JA, Maldonado R, Plata-Salamán CR, Vela JM. Pharmacological properties of S1RA, a new sigma-1 receptor antagonist that inhibits neuropathic pain and activity-induced spinal sensitization. Br J Pharmacol. 2012;166:2289–306.

    Article  CAS  PubMed  Google Scholar 

  33. Díaz JL, Zamanillo D, Corbera J, Baeyens JM, Maldonado R, Pericàs MA, Vela JM, Torrens A. Selective sigma-1 (sigma1) receptor antagonists: emerging target for the treatment of neuropathic pain. Cent Nerv Syst Agents Med Chem. 2009;9:172–83.

    Article  PubMed  Google Scholar 

  34. Kim HW, Roh DH, Yoon SY, Seo HS, Kwon YB, Han HJ, Kim KW, Beitz AJ, Lee JH. Activation of the spinal sigma-1 receptor enhances NMDA-induced pain via PKC- and PKA-dependent phosphorylation of the NR1 subunit in mice. Br J Pharmacol. 2008;154:1125–34.

    Article  CAS  PubMed  Google Scholar 

  35. Herrero JF, Laird JM, López-García JA. Wind-up of spinal cord neurones and pain sensation: much ado about something? Prog Neurobiol. 2000;61:169–203.

    Article  CAS  PubMed  Google Scholar 

  36. Dickenson AH, Chapman V, Green GM. The pharmacology of excitatory and inhibitory amino acid-mediated events in the transmission and modulation of pain in the spinal cord. Gen Pharmacol. 1997;28:633–8.

    Article  CAS  PubMed  Google Scholar 

  37. Obara I, Goulding SP, Hu JH, Klugmann M, Worley PF, Szumlinski KK. Nerve injury-induced changes in homer/glutamate receptor signaling contribute to the development and maintenance of neuropathic pain. Pain. 2013. doi:10.1016/j.pain.2013.03.035.

    PubMed  Google Scholar 

  38. Ossipov MH, Lai J, Malan TP Jr, Porreca F. Spinal and supraspinal mechanisms of neuropathic pain. Ann N Y Acad Sci. 2000;909:12–24.

    Article  CAS  PubMed  Google Scholar 

  39. Roh DH, Choi SR, Yoon SY, Kang SY, Moon JY, Kwon SG, Han HJ, Beitz AJ, Lee JH. Spinal neuronal NOS activation mediates sigma-1 receptor-induced mechanical and thermal hypersensitivity in mice: involvement of PKC-dependent GluN1 phosphorylation. Br J Pharmacol. 2011;163:1707–20.

    Article  CAS  PubMed  Google Scholar 

  40. Palacios G, Muro A, Verdú E, Pumarola M, Vela JM. Immunohistochemical localization of the sigma 1 receptor in schwann cells of rat sciatic nerve. Brain Res. 2004;1007:65–70.

    Article  CAS  PubMed  Google Scholar 

  41. Ueda H, Inoue M, Yoshida A, Mizuno K, Yamamoto H, Maruo J, Matsuno K, Mita S. Metabotropic neurosteroid/sigma-receptor involved in stimulation of nociceptor endings of mice. J Pharmacol Exp Ther. 2001;298:703–10.

    CAS  PubMed  Google Scholar 

  42. Garza HH Jr, Mayo S, Bowen WD, De Costa BR, Carr DJJ. Characterization of a (1)-azidophenazocine-sensitive sigma receptor on splenic lymphocytes. J Immunol. 1993;151:4672–80.

    CAS  PubMed  Google Scholar 

  43. Marrazzo A, Parenti C, Scavo V, Ronsisvalle S, Scoto GM, Ronsisvalle G. In vivo evaluation of (+)-MR200 as a new selective sigma ligand modulating MOP, DOP and KOP supraspinal analgesia. Life Sci. 2006;78:2449–53.

    Article  CAS  PubMed  Google Scholar 

  44. Omote K, Hazama K, Kawamata T, Kawamata M, Nakayaka Y, Toriyabe M, Namiki A. Peripheral nitric oxide in carrageenan-induced inflammation. Brain Res. 2001;912:171–5.

    Article  CAS  PubMed  Google Scholar 

  45. Stanfa LC, Misra C, Dickenson AH. Amplification of spinal nociceptive transmission depends on the generation of nitric oxide in normal and carrageenan rats. Brain Res. 1996;737:92–8.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Dr. Francesco Pappalardo and Dr. Marzio Pennisi for their valuable help in assessing data and statistical analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giuseppina Aricò.

Additional information

Responsible Editor: Ji Zhang.

C. Parenti and A. Marrazzo contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Parenti, C., Marrazzo, A., Aricò, G. et al. The antagonistic effect of the sigma 1 receptor ligand (+)-MR200 on persistent pain induced by inflammation. Inflamm. Res. 63, 231–237 (2014). https://doi.org/10.1007/s00011-013-0692-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00011-013-0692-2

Keywords

Navigation