Inflammation Research

, Volume 63, Issue 3, pp 231–237 | Cite as

The antagonistic effect of the sigma 1 receptor ligand (+)-MR200 on persistent pain induced by inflammation

  • Carmela Parenti
  • Agostino Marrazzo
  • Giuseppina Aricò
  • Rosalba Parenti
  • Lorella Pasquinucci
  • Simone Ronsisvalle
  • Giuseppe Ronsisvalle
  • Giovanna Maria Scoto
Original Research Paper


Objective and design

The sigma 1 (σ1) receptor, which is widely distributed in the CNS in areas that are known to be important for pain control, may play a role in persistent pain characterized by the hypersensitivity of nociceptive transmission. Here, we investigated the effect of σ1 blockade in an inflammatory pain model.

Treatment and methods

An intraplantar injection of carrageenan (2 %) was used to induce paw inflammation. The effects of the σ1 antagonist (+)-MR200, given subcutaneously at a dose of 0.1, 0.25, 0.5,1, 1.5, and 2 mg/kg prior to injection of carrageenan, on inflammatory pain and inflammation were assessed. Mechanical allodynia with von Frey filaments, thermal hyperalgesia with the plantar test and edema evaluation with a plethysmometer were measured. Intergroup comparisons were assessed by one- or two-way analysis of variance when appropriate, followed by post-hoc tests (Dunnett’s test for one-way or Bonferroni for two-way ANOVA).


(+)-MR200 dose-dependently prevented allodynia and hyperalgesia induced by carrageenan. Furthermore, it reduced paw edema with a significant inhibition percentage of 37.82 % at 3 h after carrageenan treatment.


The blockade of the σ1 receptor with the selective antagonist (+)-MR200 may contribute to the suppression of the typical symptoms of inflammatory pain.


(+)-MR200 Allodynia Hyperalgesia Inflammation Rat 



The authors would like to thank Dr. Francesco Pappalardo and Dr. Marzio Pennisi for their valuable help in assessing data and statistical analysis.


  1. 1.
    Martin WR, Eades CG, Thompson JA, Huppler RE, Gilbert PE. The effects of morphine and nalorphine-like drugs in the non dependent and morphine-dependent chronic spinal dog. J Pharmacol Exp Ther. 1976;197:517–32.PubMedGoogle Scholar
  2. 2.
    Cobos EJ, Entrena JM, Nieto FR, Cendán CM, Del Pozo E. Pharmacology and therapeutic potential of sigma (1) receptor ligands. Curr Neuropharmacol. 2008;6:344–66.PubMedCrossRefGoogle Scholar
  3. 3.
    Guitart X, Codony X, Monroy X. Sigma receptors: biology and therapeutic potential. Psychopharmacology. 2004;174:301–19.PubMedCrossRefGoogle Scholar
  4. 4.
    Maurice T, Su TP. The pharmacology of sigma-1 receptors. Pharmacol Ther. 2009;124:195–206.PubMedCentralPubMedCrossRefGoogle Scholar
  5. 5.
    Banister SD, Kassiou M. The therapeutic potential of sigma (σ) receptors for the treatment of central nervous system diseases: evaluation of the evidence. Curr Pharm Des. 2012;18:884–901.PubMedCrossRefGoogle Scholar
  6. 6.
    Zamanillo D, Romero L, Merlos M, Vela JM. Sigma 1 receptor: a new therapeutic target for pain. Eur J Pharmacol. 2013;. doi: 10.1016/j.ejphar.2013.01.068.Google Scholar
  7. 7.
    Vidal-Torres A, de la Puente B, Rocasalbas M, Touriño C, Andreea Bura S, Fernández-Pastor B, Romero L, Codony X, Zamanillo D, Buschmann H, Merlos M, Manuel Baeyens J, Maldonado R, Vela JM. Sigma-1 receptor antagonism as opioid adjuvant strategy: enhancement of opioid antinociception without increasing adverse effects. Eur J Pharmacol. 2013;711:63–72.PubMedCrossRefGoogle Scholar
  8. 8.
    Entrena JM, Cobos EJ, Nieto FR, Cendán CM, Gris G, Del Pozo E, Zamanillo D, Baeyens JM. Sigma-1 receptors are essential for capsaicin-induced mechanical hypersensitivity: studies with selective sigma-1 ligands and sigma-1 knockout mice. Pain. 2009;143:252–61.PubMedCrossRefGoogle Scholar
  9. 9.
    Chien CC, Pasternak GW. Functional antagonism of morphine analgesia by (+)-pentazocine: evidence for an anti-opioid sigma 1 system. Eur J Pharmacol. 1993;250:R7–8.PubMedCrossRefGoogle Scholar
  10. 10.
    Alonso G, Phan V, Guillemain I, Saunier M, Legrand A, Anoal M, Maurice T. Immunocytochemical localization of the sigma (1) receptor in the adult rat central nervous system. Neuroscience. 2000;97:155–70.PubMedCrossRefGoogle Scholar
  11. 11.
    Kitaichi K, Chabot JG, Moebius FF, Flandorfer A, Glossmann H, Quirion R. Expression of the purported sigma (1) (sigma (1)) receptor in the mammalian brain and its possible relevance in deficits induced by antagonism of the NMDA receptor complex as revealed using an antisense strategy. J Chem Neuroanat. 2000;20:375–87.PubMedCrossRefGoogle Scholar
  12. 12.
    Chien CC, Pasternak GW. Selective antagonism of opioid analgesia by a sigma system. J Pharmacol Exp Ther. 1994;271:1583–90.PubMedGoogle Scholar
  13. 13.
    Mei J, Pasternak GW. Modulation of brainstem opiate analgesia in the rat by sigma 1 receptors: a microinjection study. J Pharmacol Exp Ther. 2007;322:1278–85.PubMedCrossRefGoogle Scholar
  14. 14.
    Prezzavento O, Parenti C, Marrazzo A, Ronsisvalle S, Vittorio F, Aricò G, Scoto GM, Ronsisvalle G. A new sigma ligand (±)-PPCC, antagonizes kappa opioid receptor-mediated antinociceptive effect. Life Sci. 2008;82:549–53.PubMedCrossRefGoogle Scholar
  15. 15.
    Marrazzo A, Prezzavento O, Pasquinucci L, Vittorio F, Ronsisvalle G. Synthesis and pharmacological evaluation of potent and enantioselective sigma 1, and sigma 2 ligands. Farmaco. 2001;56:181–9.PubMedCrossRefGoogle Scholar
  16. 16.
    Chien CC, Pasternak GW. Sigma antagonists potentiate opioid analgesia in rats. Neurosci Lett. 1995;190:137–9.PubMedCrossRefGoogle Scholar
  17. 17.
    Mei J, Pasternak GW. Sigma 1 receptor modulation of opioid analgesia in the mouse. J Pharmacol Exp Ther. 2002;300:1070–4.PubMedCrossRefGoogle Scholar
  18. 18.
    Cendán CM, Pujalte JM, Portillo-Salido E, Montoliu L, Baeyens JM. Formalin-induced pain is reduced in sigma (1) receptor knockout mice. Eur J Pharmacol. 2005;511:73–4.PubMedCrossRefGoogle Scholar
  19. 19.
    Cendán CM, Pujalte JM, Portillo-Salido E, Baeyens JM. Antinociceptive effects of haloperidol and its metabolites in the formalin test in mice. Psychopharmacology. 2005;182:485–93.PubMedCrossRefGoogle Scholar
  20. 20.
    Kidd BL, Urban LA. Mechanisms of inflammatory pain. Br J Anaesth. 2001;87:3–11.PubMedCrossRefGoogle Scholar
  21. 21.
    Parenti C, Aricò G, Ronsisvalle G, Scoto GM. Supraspinal injection of substance P attenuates allodynia and hyperalgesia in a rat model of inflammatory pain. Peptides. 2012;34:412–8.PubMedCrossRefGoogle Scholar
  22. 22.
    Laskin DL, Pendino KJ. Macrophages and inflammatory mediators in tissue injury. Annu Rev Pharmacol Toxicol. 1995;35:655–77.PubMedCrossRefGoogle Scholar
  23. 23.
    Dixon WJ. Efficient analysis of experimental observations. Annu Rev Pharmacol Toxicol. 1980;20:441–62.PubMedCrossRefGoogle Scholar
  24. 24.
    Hargreaves K, Dubner R, Brown F, Flores C, Joris J. A new and sensitive method for measuring thermal nociception in cutaneous hyperalgesia. Pain. 1988;32:77–88.PubMedCrossRefGoogle Scholar
  25. 25.
    Winter CA, Risley EA, Nuss GW. Carrageenin-induced edema in hind paw of the rat as an assay for antiiflammatory drugs. Proc Soc Exp Biol Med. 1962;111:544–7.PubMedCrossRefGoogle Scholar
  26. 26.
    Katz WA, Bjorkman DJ, Fendrick AM, Hauser WA, Heaton AH, Manning DC, Morgan GJ, Porter GA, Raffa RB, Singh G. Challenges and progress in managing chronic pain. Analgesia. 1999;4:483–504.Google Scholar
  27. 27.
    de la Puente B, Nadal X, Portillo-Salido E, Sánchez-Arroyos R, Ovalle S, Palacios G, Muro A, Romero L, Entrena JM, Baeyens JM, López-García JA, Maldonado R, Zamanillo D, Vela JM. Sigma-1 receptors regulate activity-induced spinal sensitization and neuropathic pain after peripheral nerve injury. Pain. 2009;145:294–303.PubMedCrossRefGoogle Scholar
  28. 28.
    Roh DH, Kim HW, Yoon SY, Seo HS, Kwon YB, Kim KW, Han HJ, Beitz AJ, Na HS, Lee JH. Intrathecal injection of the sigma (1) receptor antagonist BD 1047 blocks both mechanical allodynia and increases in spinal NR1 expression during the induction phase of rodent neuropathic pain. Anesthesiology. 2008;109:879–89.PubMedCrossRefGoogle Scholar
  29. 29.
    Nieto FR, Cendán CM, Sánchez-Fernández C, Cobos EJ, Entrena JM, Tejada MA, Zamanillo D, Vela JM, Baeyens JM. Role of sigma-1 receptors in paclitaxel-induced neuropathic pain in mice. J Pain. 2012;13:1107–21.PubMedCrossRefGoogle Scholar
  30. 30.
    Rosland JH, Tjølsen A, Maehle B, Hole K. The formalin test in mice: effect of formalin concentration. Pain. 1990;42:235–42.PubMedCrossRefGoogle Scholar
  31. 31.
    Coderre TJ, Melzack R. The contribution of excitatory amino acids to central sensitization and persistent nociception after formalin-induced tissue injury. J Neurosci. 1992;12:3665–70.PubMedGoogle Scholar
  32. 32.
    Romero L, Zamanillo D, Nadal X, Sánchez-Arroyos R, Rivera-Arconada I, Dordal A, Montero A, Muro A, Bura A, Segalés C, Laloya M, Hernández E, Portillo-Salido E, Escriche M, Codony X, Encina G, Burgueño J, Merlos M, Baeyens JM, Giraldo J, López-García JA, Maldonado R, Plata-Salamán CR, Vela JM. Pharmacological properties of S1RA, a new sigma-1 receptor antagonist that inhibits neuropathic pain and activity-induced spinal sensitization. Br J Pharmacol. 2012;166:2289–306.PubMedCrossRefGoogle Scholar
  33. 33.
    Díaz JL, Zamanillo D, Corbera J, Baeyens JM, Maldonado R, Pericàs MA, Vela JM, Torrens A. Selective sigma-1 (sigma1) receptor antagonists: emerging target for the treatment of neuropathic pain. Cent Nerv Syst Agents Med Chem. 2009;9:172–83.PubMedCrossRefGoogle Scholar
  34. 34.
    Kim HW, Roh DH, Yoon SY, Seo HS, Kwon YB, Han HJ, Kim KW, Beitz AJ, Lee JH. Activation of the spinal sigma-1 receptor enhances NMDA-induced pain via PKC- and PKA-dependent phosphorylation of the NR1 subunit in mice. Br J Pharmacol. 2008;154:1125–34.PubMedCrossRefGoogle Scholar
  35. 35.
    Herrero JF, Laird JM, López-García JA. Wind-up of spinal cord neurones and pain sensation: much ado about something? Prog Neurobiol. 2000;61:169–203.PubMedCrossRefGoogle Scholar
  36. 36.
    Dickenson AH, Chapman V, Green GM. The pharmacology of excitatory and inhibitory amino acid-mediated events in the transmission and modulation of pain in the spinal cord. Gen Pharmacol. 1997;28:633–8.PubMedCrossRefGoogle Scholar
  37. 37.
    Obara I, Goulding SP, Hu JH, Klugmann M, Worley PF, Szumlinski KK. Nerve injury-induced changes in homer/glutamate receptor signaling contribute to the development and maintenance of neuropathic pain. Pain. 2013. doi: 10.1016/j.pain.2013.03.035.PubMedGoogle Scholar
  38. 38.
    Ossipov MH, Lai J, Malan TP Jr, Porreca F. Spinal and supraspinal mechanisms of neuropathic pain. Ann N Y Acad Sci. 2000;909:12–24.PubMedCrossRefGoogle Scholar
  39. 39.
    Roh DH, Choi SR, Yoon SY, Kang SY, Moon JY, Kwon SG, Han HJ, Beitz AJ, Lee JH. Spinal neuronal NOS activation mediates sigma-1 receptor-induced mechanical and thermal hypersensitivity in mice: involvement of PKC-dependent GluN1 phosphorylation. Br J Pharmacol. 2011;163:1707–20.PubMedCrossRefGoogle Scholar
  40. 40.
    Palacios G, Muro A, Verdú E, Pumarola M, Vela JM. Immunohistochemical localization of the sigma 1 receptor in schwann cells of rat sciatic nerve. Brain Res. 2004;1007:65–70.PubMedCrossRefGoogle Scholar
  41. 41.
    Ueda H, Inoue M, Yoshida A, Mizuno K, Yamamoto H, Maruo J, Matsuno K, Mita S. Metabotropic neurosteroid/sigma-receptor involved in stimulation of nociceptor endings of mice. J Pharmacol Exp Ther. 2001;298:703–10.PubMedGoogle Scholar
  42. 42.
    Garza HH Jr, Mayo S, Bowen WD, De Costa BR, Carr DJJ. Characterization of a (1)-azidophenazocine-sensitive sigma receptor on splenic lymphocytes. J Immunol. 1993;151:4672–80.PubMedGoogle Scholar
  43. 43.
    Marrazzo A, Parenti C, Scavo V, Ronsisvalle S, Scoto GM, Ronsisvalle G. In vivo evaluation of (+)-MR200 as a new selective sigma ligand modulating MOP, DOP and KOP supraspinal analgesia. Life Sci. 2006;78:2449–53.PubMedCrossRefGoogle Scholar
  44. 44.
    Omote K, Hazama K, Kawamata T, Kawamata M, Nakayaka Y, Toriyabe M, Namiki A. Peripheral nitric oxide in carrageenan-induced inflammation. Brain Res. 2001;912:171–5.PubMedCrossRefGoogle Scholar
  45. 45.
    Stanfa LC, Misra C, Dickenson AH. Amplification of spinal nociceptive transmission depends on the generation of nitric oxide in normal and carrageenan rats. Brain Res. 1996;737:92–8.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Basel 2013

Authors and Affiliations

  • Carmela Parenti
    • 1
  • Agostino Marrazzo
    • 2
  • Giuseppina Aricò
    • 2
  • Rosalba Parenti
    • 3
  • Lorella Pasquinucci
    • 2
  • Simone Ronsisvalle
    • 2
  • Giuseppe Ronsisvalle
    • 2
  • Giovanna Maria Scoto
    • 1
  1. 1.Pharmacology and Toxicology Section, Department of Drug SciencesUniversity of CataniaCataniaItaly
  2. 2.Medicinal Chemistry Section, Department of Drug SciencesUniversity of CataniaCataniaItaly
  3. 3.Phisiology Section, Department of Biomedical SciencesUniversity of CataniaCataniaItaly

Personalised recommendations