Inflammation Research

, Volume 62, Issue 4, pp 425–440 | Cite as

Hesperidin alleviates oxidative stress and downregulates the expressions of proliferative and inflammatory markers in azoxymethane-induced experimental colon carcinogenesis in mice

  • Gowrikumar Saiprasad
  • Palanivel Chitra
  • Ramar Manikandan
  • Ganapasam Sudhandiran
Original Research Paper



Colon cancer is a common malignant neoplasm causing huge morbidity and mortality worldwide. Current therapeutic interventions are unsatisfying, which necessitates novel chemopreventive strategies. The present study was intended to elucidate the chemopreventive efficacy of hesperidin against azoxymethane (AOM)-induced mouse colon carcinogenesis.

Materials and methods

Swiss albino mice were subjected to intraperitoneal injections of AOM once a week for 3 consecutive weeks. Hesperidin treatments were provided in the initiation or post-initiation phases. The number and multiplicity of aberrant crypt foci (ACF), tumor incidence and antioxidant status were determined. Histopathological analyses, proliferating cell nuclear antigen (PCNA) index and modulations in the expression of inflammatory markers such as nuclear factor kappa B (NF-κB), inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) were studied.


Hesperidin treatments significantly inhibited the number and multiplicities of AOM-induced ACF and tumor incidence. Hesperidin reduced oxidative stress parameters and enhanced antioxidant status. A marked decrease in the PCNA index was evident on hesperidin administration. Hesperidin treatments caused a prominent downregulation of NF-κB and its target molecules iNOS and COX-2, thereby combating inflammation.


This study proves the chemopreventive efficacy of hesperidin against the deleterious traits of colon carcinogenesis including accelerated proliferation, inflammation and persistent oxidative stress.


Hesperidin Colon carcinogenesis PCNA NF-κB COX-2 iNOS 



This work was supported by a fund from the Council of Scientific and Industrial Research (CSIR), New Delhi. We thank Dr. Ramamurthy, Director, Ultra-fast Process Laboratory, University of Madras for his help in confocal imaging.


  1. 1.
    Siegel R, Ward E, Brawley O, Jemal A. Cancer statistics 2011: the impact of eliminating socio economic and racial disparities on premature cancer deaths. CA Cancer J Clin. 2011;61:212–36.PubMedCrossRefGoogle Scholar
  2. 2.
    Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D. Global cancer statistics. CA Cancer J Clin. 2011;61:69–90.PubMedCrossRefGoogle Scholar
  3. 3.
    Thompson PA, Gerner EW. Current concepts in colorectal cancer prevention. Expert Rev Gastroenterol Hepatol. 2009;3:369–82.PubMedCrossRefGoogle Scholar
  4. 4.
    Wei EK, Giovannucci E, Wu K, Rosner B, Fuchs CS, Willett WC, Colditz GA. Comparison of risk factors for colon and rectal cancer. Int J Cancer. 2004;108:433–42.PubMedCrossRefGoogle Scholar
  5. 5.
    Tapas AR, Sakarkar DM, Kakde RB. Flavonoids as nutraceuticals: a review. Trop J Pharm Res. 2008;7:1089–99.CrossRefGoogle Scholar
  6. 6.
    Birt DF, Hendrich S, Wang W. Dietary agents in cancer prevention: flavonoids and isoflavonoids. Pharmacol Ther. 2001;90:157–77.PubMedCrossRefGoogle Scholar
  7. 7.
    Boateng J, Verghese M, Shackelford L, Walker LT, Khatiwada J, Ogutu S, Williams DS, Jones J, Guyton M, Asiamah D, Henderson F, Grant L, DeBruce M, Johnson A, Washington S, Chawan CB. Selected fruits reduce azoxymethane (AOM)-induced aberrant crypt foci (ACF) in Fisher 344 male rats. Food Chem Toxicol. 2007;45:725–32.PubMedCrossRefGoogle Scholar
  8. 8.
    Nishino H, Tokuda H, Satomi Y, Masuda M, Onozuka M, Yamaguchi S, Takayasu J, Tsuruta J, Takemura M, Ii T, Ichiishi E, Kuchide S, Okuda M, Murakoshi M. Cancer chemoprevention by phytochemicals and their related compounds. Asian Pac J Cancer Prev. 2000;1:49–55.PubMedGoogle Scholar
  9. 9.
    Benavente OG, Castillo J, Alcaraz M, Vicente V, Del JA, Ortuno A. Beneficial action of Citrus flavonoids on multiple cancer-related biological pathways. Curr Cancer Drug Targets. 2007;7:795–809.CrossRefGoogle Scholar
  10. 10.
    Garg A, Garg S, Zaneveld LJ, Singla AK. Chemistry and pharmacology of the Citrus bioflavonoid hesperidin. Phytother Res. 2001;15:655–69.PubMedCrossRefGoogle Scholar
  11. 11.
    Patricia KW, Dalla SS, Mirian S. Antioxidant activity of the flavonoid hesperidin in chemical and biological systems. J Agric Food Chem. 2005;53:4757–61.CrossRefGoogle Scholar
  12. 12.
    Kamaraj S, Ramakrishnan G, Anandakumar P, Jagan S, Devaki T. Antioxidant and anticancer efficacy of hesperidin in benzo(a)pyrene induced lung carcinogenesis in mice. Invest New Drugs. 2009;27:214–22.PubMedCrossRefGoogle Scholar
  13. 13.
    Leef KH, Yehb MH, Kao ST, Hung CM, Liu CJ, Huang YY, Yeh CC. The inhibitory effect of hesperidin on tumor cell invasiveness occurs via suppression of activator protein 1 and nuclear factor-kappa B in human hepatocellular carcinoma cells. Toxicol Lett. 2010;194:42–9.CrossRefGoogle Scholar
  14. 14.
    Andriantsitohaina R, Duluc L, Rodriguez JCG, Valle LGD, Garcia MG, Simard G, Soleti R, Su DF, Perez LV, Wilson JX, Laher I. Systems biology of antioxidants. Clin Sci (Lond). 2012;123:173–92.CrossRefGoogle Scholar
  15. 15.
    Heijstek MW, Kranenburg O, Rinkes IHMB. Mouse models of colorectal cancer and liver metastases. Dig Surg. 2005;22:16–25.PubMedCrossRefGoogle Scholar
  16. 16.
    Ashokkumar P, Sudhandiran G. Protective role of luteolin on the status of lipid peroxidation and antioxidant defence against azoxymethane-induced experimental colon carcinogenesis. Biomed Pharmacother. 2008;62:590–7.PubMedCrossRefGoogle Scholar
  17. 17.
    Beelen VA, Spenkelink B, Mooibroek H, Sijtsma L, Bosch D, Rietjens IM, Alink GM. An n-3 PUFA-rich microalgal oil diet protects to a similar extent as a fish oil-rich diet against AOM-induced colonic aberrant crypt foci in F344 rats. Food Chem Toxicol. 2009;47:316–20.PubMedCrossRefGoogle Scholar
  18. 18.
    Wargovich MJ, Brown VR, Morris J. Aberrant crypt foci: the case for inclusion as a biomarker for colon cancer. Cancers. 2010;2:1705–16.CrossRefGoogle Scholar
  19. 19.
    Hall PA, Levison DA, Woods AL, Yu CCW, Kellock DB, Watkins JA, Barnes DM, Gillett CE, Camplejohn R, Dover R, Waseem NH, Lane DP. Proliferating cell nuclear antigen (PCNA) immunolocalization in paraffin sections: an index of cell proliferation with evidence of deregulated expression in some neoplasms. J Pathol. 1990;162:285–94.PubMedCrossRefGoogle Scholar
  20. 20.
    Pikarsky E, Neriah YB. NF-κB inhibition: a double-edged sword in cancer? Eur J Cancer. 2006;42:779–84.PubMedCrossRefGoogle Scholar
  21. 21.
    Murakami A, Ohigashi H. Targeting NOX, INOS and COX-2 in inflammatory cells: chemoprevention using food phytochemicals. Int J Cancer. 2007;21:2357–63.CrossRefGoogle Scholar
  22. 22.
    Lala PK, Chakraborty C. Role of nitric oxide in carcinogenesis and tumor progression. Lancet Oncol. 2001;2:149–56.PubMedCrossRefGoogle Scholar
  23. 23.
    Watanabe K, Kawamori T, Nakatsugi S, Wakabayashi K. COX-2 and iNOS, good targets for chemoprevention of colon cancer. BioFactors. 2000;12:129–33.PubMedCrossRefGoogle Scholar
  24. 24.
    Bird RP. Observation and quantification of aberrant crypt foci in murine colon treated with a colon carcinogen: preliminary findings. Cancer Lett. 1987;37:147–51.PubMedCrossRefGoogle Scholar
  25. 25.
    Lowry OH, Rosebrough NJ, Farr AL, Randall RJ. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951;193:265–75.PubMedGoogle Scholar
  26. 26.
    Ohkawa H, Ohishi N, Yagi K. Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem. 1972;95:351–8.CrossRefGoogle Scholar
  27. 27.
    Cederbaum AI, Cohen G. In: Packer L, editor, Methods in enzymology. San Diego: Academic Press; 1984. pp. 516–522.Google Scholar
  28. 28.
    Misra HP, Fridovich I. The role of superoxide anion in the autoxidation of epinephrine and a simple assay for superoxide dismutase. J Biol Chem. 1972;247:3170–5.PubMedGoogle Scholar
  29. 29.
    Sinha AK. Colorimetric assay of catalase. Anal Biochem. 1972;47:389–94.PubMedCrossRefGoogle Scholar
  30. 30.
    Rotruck JT, Pope AL, Ganther HE, Swanson AB, Hafeman DG, Hoekstra WG. Selenium: biochemical role as a component of glutathione peroxidase. Science. 1973;179:588–90.PubMedCrossRefGoogle Scholar
  31. 31.
    Staal GE, Visser J, Veeger C. Purification and properties of glutathione reductase of human erythrocytes. Biochim Biophys Acta. 1969;185:39–48.PubMedCrossRefGoogle Scholar
  32. 32.
    Moron MS, Depierre JW, Mannervik B. Levels of glutathione, glutathione reductase and glutathione S-transferase activities in rat lung and liver. Biochim Biophys Acta. 1979;4:67–78.CrossRefGoogle Scholar
  33. 33.
    Omaye ST, Urnbull JB, Sauberlich HE. Selected methods for the determination of ascorbic acid in animal cells, tissues and fluids. Methods Enzymol. 1979;62:1–11.Google Scholar
  34. 34.
    Desai ID. Vitamin E analysis method for animal tissues. Methods Enzymol. 1984;105:138–43.PubMedCrossRefGoogle Scholar
  35. 35.
    Takayama T, Katsuki S, Takahashi Y, Ohi M, Nojiri S, Sakamaki S, Kato J, Kogawa K, Miyake H, Niitsu Y. Aberrant crypt foci of the colon as precursors of adenoma and cancer. N Engl J Med. 1998;339:1277–84.PubMedCrossRefGoogle Scholar
  36. 36.
    Miyamoto S, Yasui Y, Ohigashi H, Tanaka T, Murakami A. Dietary flavonoids suppress azoxymethane-induced colonic preneoplastic lesions in male C57BL/KsJ-db/db mice. Chem Biol Interact. 2010;18:276–83.CrossRefGoogle Scholar
  37. 37.
    Gee JM, Hara H, Johnson IT. Suppression of intestinal crypt cell proliferation and aberrant crypt foci by dietary quercetin in rats. Nutr Cancer. 2002;43:193–201.PubMedCrossRefGoogle Scholar
  38. 38.
    Kohno H, Tanaka T, Kawabata K, Hirose Y, Sugie S, Tsuda H, Mori H. Silymarin, a naturally occurring polyphenolic antioxidant flavonoid, inhibits azoxymethane-induced colon carcinogenesis in male f344 rats. Int J Cancer. 2002;101:461–8.PubMedCrossRefGoogle Scholar
  39. 39.
    Leonardi T, Vanamala J, Taddeo SS, Davidson LA, Murphy ME, Patil BS, Wang N, Carroll RJ, Chapkin RS, Lupton JR, Turner ND. Apigenin and naringenin suppress colon carcinogenesis through the aberrant crypt stage in azoxymethane-treated rats. Exp Biol Med. 2010;23:710–7.Google Scholar
  40. 40.
    Valko M, Izakovic M, Mazur M, Rhodes CJ, Telser J. Role of oxygen radicals in DNA damage and cancer incidence. Mol Cell Biochem. 2004;266:37–56.PubMedCrossRefGoogle Scholar
  41. 41.
    Skrzydlewska E, Stankiewicz A, Sulkowska M, Sulkowski S, Kasacka I. Antioxidant status and lipid peroxidation in colorectal cancer. J Toxicol Environ Health. 2001;64:213–22.CrossRefGoogle Scholar
  42. 42.
    Valko M, Rhodes CJ, Moncol J, Izakovic M, Mazur M. Free radicals, metals and antioxidants in oxidative stress-induced cancer. Chem Biol Interact. 2000;160:1–40.CrossRefGoogle Scholar
  43. 43.
    Mates JM, Sanchez JF. Antioxidant enzymes and the implications in pathophysiologic processes. Front Biosci. 1999;4:D339–45.PubMedCrossRefGoogle Scholar
  44. 44.
    Roberta M, Roberta DB, Rosaria V, Carmela F, Claudio G. Novel mechanisms of natural antioxidant compounds in biological systems: involvement of glutathione and glutathione-related enzymes. J Nutr Biochem. 2005;16:577–86.CrossRefGoogle Scholar
  45. 45.
    Kojo S. Vitamin C: basic metabolism and its function as an index of oxidative stress. Curr Med Chem. 2004;11:1041–64.PubMedCrossRefGoogle Scholar
  46. 46.
    Burton GW, Ingold KU. Auto oxidation of biological molecules: the antioxidant activity of vitamin E and related chain-breaking phenolic antioxidants in vitro. J Am Chem Soc. 1981;103:64–72.Google Scholar
  47. 47.
    Evan GI, Vousden KH. Proliferation, cell cycle and apoptosis in cancer. Nature. 2001;411:342–8.PubMedCrossRefGoogle Scholar
  48. 48.
    Bedi A, Pasricha PJ, Akhtar AJ, Barber JP, Bedi GC, Giardiello FM, Zehnbauer BA, Hamilton SR, Jones RJ. Inhibition of apoptosis during development of colorectal cancer. Cancer Res. 1995;55:1811–6.PubMedGoogle Scholar
  49. 49.
    Galati G, Teng S, Moridani MY, Chan TS, Brien PJO. Cancer chemoprevention and apoptosis mechanisms induced by dietary polyphenolics. Drug Metabol Drug Interact. 2000;17:311–49.PubMedCrossRefGoogle Scholar
  50. 50.
    Kubben FJGM, Haesevoets AP, Engels LGJB, Baeten CGMI, Schutte B, Arends JW, Stockbrugger RW, Blijham GH. Proliferating cell nuclear antigen (PCNA): a new marker to study human colonic cell proliferation. Gut. 1994;35:530–5.PubMedCrossRefGoogle Scholar
  51. 51.
    Ravichandran K, Velmurugan B, Gu M, Singh RP, Agarwal R. Inhibitory effect of silibinin against azoxymethane-induced colon tumorigenesis in A/J mice. Clin Cancer Res. 2010;16:4595–606.PubMedCrossRefGoogle Scholar
  52. 52.
    Velmurugan B, Singh RP, Agarwal R, Agarwal C. Dietary-feeding of grape seed extract prevents azoxymethane-induced colonic aberrant crypt foci formation in Fischer 344 rats. Mol Carcinog. 2010;49:641–52.PubMedGoogle Scholar
  53. 53.
    Terzic J, Grivennikov S, Karin E, Karin M. Inflammation and colon cancer. Gastroenterology. 2010;138:2101–14.PubMedCrossRefGoogle Scholar
  54. 54.
    Perkins ND. Integrating cell-signalling pathways with NF-kappa B and IKK function. Nat Rev Mol Cell Biol. 2007;8:49–62.PubMedCrossRefGoogle Scholar
  55. 55.
    Karin M. NF-κB as a critical link between inflammation and cancer. Cold Spring Harb Perspect Biol. 2009;1:a000141.PubMedCrossRefGoogle Scholar
  56. 56.
    Wang S, Liu Z, Wang L, Zhang X. NF-kB signaling pathway, inflammation and colorectal cancer. Cell Mol Immunol. 2009;6:327–34.PubMedCrossRefGoogle Scholar
  57. 57.
    Kojima M, Morisaki T, Sasaki N, Nakano K, Mibu R, Tanaka M, Katano M. Increased nuclear factor-κB activation in human colorectal carcinoma and its correlation with tumor progression. Anticancer Res. 2004;24:675–82.PubMedGoogle Scholar
  58. 58.
    Rao CV. Nitric oxide signaling in colon cancer chemoprevention. Mutat Res. 2004;555:107–19.PubMedCrossRefGoogle Scholar
  59. 59.
    Williams CS, Mann M, Dubois RN. The role of cyclooxygenases in inflammation, cancer, and development. Oncogene. 1999;18:7908–16.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Basel 2013

Authors and Affiliations

  • Gowrikumar Saiprasad
    • 1
  • Palanivel Chitra
    • 1
  • Ramar Manikandan
    • 2
  • Ganapasam Sudhandiran
    • 1
  1. 1.Department of Biochemistry, Cell Biology LaboratoryUniversity of MadrasChennaiIndia
  2. 2.Department of Animal Health and ManagementAlagappa UniversityKaraikudiIndia

Personalised recommendations