Skip to main content
Log in

Lipopolysaccharide/adenosine triphosphate-mediated signal transduction in the regulation of NLRP3 protein expression and caspase-1-mediated interleukin-1β secretion

  • Original Research Paper
  • Published:
Inflammation Research Aims and scope Submit manuscript

Abstract

Objective

Reactive oxygen species (ROS) plays a critical role in the regulation of NLRP3 inflammasome activation. However, the ROS-mediated signaling pathways controlling NLRP3 inflammasome activation are not well defined.

Methods

Using lipopolysaccharide (LPS) and adenosine triphosphate (ATP) activated murine macrophages as the testing model, cytokine release and protein expression were quantified by enzyme-linked immunosorbent assay and Western blot, respectively. ROS was scavenged by N-acetyl cysteine; NADPH oxidase, the major source of ROS, was inhibited by diphenyliodonium, apocynin or gp91-phox siRNA transfection; and protein kinase was inhibited by its specific inhibitor.

Results

LPS-induced NLRP3 protein expression was regulated through the NADPH oxidase/ROS/NF-κB-dependent, JAK2/PI3-kinase/AKT/NF-κB-dependent, and MAPK-dependent pathways, while ATP-induced caspase-1 activation was regulated through the NADPH oxidase/ROS-dependent pathway.

Conclusions

These results demonstrate that ROS regulates not only the priming stage, but also the activation stage, of NLRP3 inflammasome activation in LPS + ATP-activated macrophages.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Hsu HY, Wen MH. Lipopolysaccharide-mediated reactive oxygen species and signal transduction in the regulation of interleukin-1 gene expression. J Biol Chem. 2002;277(25):22131–9.

    Article  PubMed  CAS  Google Scholar 

  2. Miller DK, Myerson J, Becker JW. The interleukin-1 beta converting enzyme family of cysteine proteases. J Cell Biochem. 1997;64(1):2–10.

    Article  PubMed  CAS  Google Scholar 

  3. Dinarello CA. Interleukin-1. Cytokine Growth Factor Rev. 1997;8(4):253–65.

    Article  PubMed  CAS  Google Scholar 

  4. Dinarello CA. Immunological and inflammatory functions of the interleukin-1 family. Annu Rev Immunol. 2009;27:519–50.

    Article  PubMed  CAS  Google Scholar 

  5. Martinon F, Mayor A, Tschopp J. The inflammasomes: guardians of the body. Annu Rev Immunol. 2009;27:229–65.

    Article  PubMed  CAS  Google Scholar 

  6. Schroder K, Tschopp J. The inflammasomes. Cell. 2010;140(6):821–32.

    Article  PubMed  CAS  Google Scholar 

  7. Davis BK, Wen H, Ting JP. The inflammasome NLRs in immunity, inflammation, and associated diseases. Annu Rev Immunol. 2011;29:707–35.

    Article  PubMed  CAS  Google Scholar 

  8. Cassel SL, Joly S, Sutterwala FS. The NLRP3 inflammasome: a sensor of immune danger signals. Semin Immunol. 2009;21(4):194–8.

    Article  PubMed  CAS  Google Scholar 

  9. Jin C, Flavell RA. Molecular mechanism of NLRP3 inflammasome activation. J Clin Immunol. 2010;30(5):628–31.

    Article  PubMed  CAS  Google Scholar 

  10. Kanneganti TD, Ozören N, Body-Malapel M, Amer A, Park JH, Franchi L, Whitfield J, Barchet W, Colonna M, Vandenabeele P, Bertin J, Coyle A, Grant EP, Akira S, Núñez G. Bacterial RNA and small antiviral compounds activate caspase-1 through cryopyrin/Nalp3. Nature. 2006;440(7081):233–6.

    Article  PubMed  CAS  Google Scholar 

  11. Allen IC, Scull MA, Moore CB, Holl EK, McElvania-TeKippe E, Taxman DJ, Guthrie EH, Pickles RJ, Ting JP. The NLRP3 inflammasome mediates in vivo innate immunity to influenza A virus through recognition of viral RNA. Immunity. 2009;30(4):556–65.

    Article  PubMed  CAS  Google Scholar 

  12. Gross O, Poeck H, Bscheider M, Dostert C, Hannesschläger N, Endres S, Hartmann G, Tardivel A, Schweighoffer E, Tybulewicz V, Mocsai A, Tschopp J, Ruland J. Syk kinase signalling couples to the Nlrp3 inflammasome for anti-fungal host defence. Nature. 2009;459(7245):433–6.

    Article  PubMed  CAS  Google Scholar 

  13. Vandanmagsar B, Youm YH, Ravussin A, Galgani JE, Stadler K, Mynatt RL, Ravussin E, Stephens JM, Dixit VD. The NLRP3 inflammasome instigates obesity-induced inflammation and insulin resistance. Nat Med. 2011;17(2):179–88.

    Article  PubMed  CAS  Google Scholar 

  14. Duewell P, Kono H, Rayner KJ, Sirois CM, Vladimer G, Bauernfeind FG, Abela GS, Franchi L, Nuñez G, Schnurr M, Espevik T, Lien E, Fitzgerald KA, Rock KL, Moore KJ, Wright SD, Hornung V, Latz E. NLRP3 inflammasomes are required for atherogenesis and activated by cholesterol crystals. Nature. 2010;464(7293):1357–61.

    Article  PubMed  CAS  Google Scholar 

  15. Hornung V, Bauernfeind F, Halle A, Samstad EO, Kono H, Rock KL, Fitzgerald KA, Latz E. Silica crystals and aluminum salts activate the NALP3 inflammasome through phagosomal destabilization. Nat Immunol. 2008;9(8):847–56.

    Article  PubMed  CAS  Google Scholar 

  16. Halle A, Hornung V, Petzold GC, Stewart CR, Monks BG, Reinheckel T, Fitzgerald KA, Latz E, Moore KJ, Golenbock DT. The NALP3 inflammasome is involved in the innate immune response to amyloid-beta. Nat Immunol. 2008;9(8):857–65.

    Article  PubMed  CAS  Google Scholar 

  17. Martinon F, Pétrilli V, Mayor A, Tardivel A, Tschopp J. Gout-associated uric acid crystals activate the NALP3 inflammasome. Nature. 2006;440(7081):237–41.

    Article  PubMed  CAS  Google Scholar 

  18. Mariathasan S, Weiss DS, Newton K, McBride J, O’Rourke K, Roose-Girma M, Lee WP, Weinrauch Y, Monack DM, Dixit VM. Cryopyrin activates the inflammasome in response to toxins and ATP. Nature. 2006;440(7081):228–32.

    Article  PubMed  CAS  Google Scholar 

  19. Bulua AC, Simon A, Maddipati R, Pelletier M, Park H, Kim KY, Sack MN, Kastner DL, Siegel RM. Mitochondrial reactive oxygen species promote production of proinflammatory cytokines and are elevated in TNFR1-associated periodic syndrome (TRAPS). J Exp Med. 2011;208(3):519–33.

    Article  PubMed  CAS  Google Scholar 

  20. Saïd-Sadier N, Padilla E, Langsley G, Ojcius DM. Aspergillus fumigatus stimulates the NLRP3 inflammasome through a pathway requiring ROS production and the Syk tyrosine kinase. PLoS One. 2010;5(4):e10008.

    Article  PubMed  Google Scholar 

  21. Martinon F. Signaling by ROS drives inflammasome activation. Eur J Immunol. 2010;40(3):616–9.

    Article  PubMed  CAS  Google Scholar 

  22. Zhou R, Yazdi AS, Menu P, Tschopp J. A role for mitochondria in NLRP3 inflammasome activation. Nature. 2011;469(7329):221–5.

    Article  PubMed  CAS  Google Scholar 

  23. Carta S, Tassi S, Pettinati I, Delfino L, Dinarello CA, Rubartelli A. The rate of IL-1{beta} secretion in different myeloid cells varies with the extent of redox response to Toll-like receptor triggering. J Biol Chem. 2011;286(31):27069–80.

    Article  PubMed  CAS  Google Scholar 

  24. Tschopp J, Schroder K. NLRP3 inflammasome activation: The convergence of multiple signalling pathways on ROS production? Nat Rev Immunol. 2010;10(3):210–5.

    Article  PubMed  CAS  Google Scholar 

  25. Bauernfeind FG, Horvath G, Stutz A, Alnemri ES, MacDonald K, Speert D, Fernandes-Alnemri T, Wu J, Monks BG, Fitzgerald KA, Hornung V, Latz E. Cutting edge: NF-kappaB activating pattern recognition and cytokine receptors license NLRP3 inflammasome activation by regulating NLRP3 expression. J Immunol. 2009;183(2):787–91.

    Article  PubMed  CAS  Google Scholar 

  26. Bauernfeind F, Bartok E, Rieger A, Franchi L, Núñez G, Hornung V. Cutting edge: reactive oxygen species inhibitors block priming, but not activation, of the NLRP3 inflammasome. J Immunol. 2011;187(2):613–7.

    Article  PubMed  CAS  Google Scholar 

  27. Park HS, Jung HY, Park EY, Kim J, Lee WJ, Bae YS. Direct interaction of TLR4 with NAD(P)H oxidase 4 isozyme is essential for lipopolysaccharide-induced production of reactive oxygen species and activation of NF-kappa B. J Immunol. 2004;173(6):3589–93.

    PubMed  CAS  Google Scholar 

  28. Kong X, Thimmulappa R, Kombairaju P, Biswal S. NADPH oxidase-dependent reactive oxygen species mediate amplified TLR4 signaling and sepsis-induced mortality in Nrf2-deficient mice. J Immunol. 2010;185(1):569–77.

    Article  PubMed  CAS  Google Scholar 

  29. van Bruggen R, Köker MY, Jansen M, van Houdt M, Roos D, Kuijpers TW. Human NLRP3 inflammasome activation is Nox1-4 independent. Blood. 2010;115:5398–400.

    Article  PubMed  Google Scholar 

  30. van de Veerdonk FL, Smeekens SP, Joosten LA, Kullberg BJ, Dinarello CA, van der Meer JW, Netea MG. Reactive oxygen species independent activation of the IL-1beta inflammasome in cells from patients with chronic granulomatous disease. Proc Natl Acad Sci USA. 2010;107(7):3030–3.

    Article  PubMed  Google Scholar 

  31. Meissner F, Seger RA, Moshous D, Fischer A, Reichenbach J, Zychlinsky A. Inflammasome activation in NADPH oxidase defective mononuclear phagocytes from patients with chronic granulomatous disease. Blood. 2010;116:1570–3.

    Article  PubMed  CAS  Google Scholar 

  32. Moore SF, MacKenzie AB. NADPH oxidase NOX2 mediates rapid cellular oxidation following ATP stimulation of endotoxin-primed macrophages. J Immunol. 2009;183(5):3302–8.

    Article  PubMed  CAS  Google Scholar 

  33. Kepp O, Galluzzi L, Kroemer G. Mitochondrial control of the NLRP3 inflammasome. Nat Immunol. 2011;12(3):199–200.

    Article  PubMed  CAS  Google Scholar 

  34. Nakahira K, Haspel JA, Rathinam VA, Lee SJ, Dolinay T, Lam HC, Englert JA, Rabinovitch M, Cernadas M, Kim HP, Fitzgerald KA, Ryter SW, Choi AM. Autophagy proteins regulate innate immune responses by inhibiting the release of mitochondrial DNA mediated by the NALP3 inflammasome. Nat Immunol. 2011;12(3):222–30.

    Article  PubMed  CAS  Google Scholar 

  35. Meissner F, Molawi K, Zychlinsky A. Superoxide dismutase 1 regulates caspase-1 and endotoxic shock. Nat Immunol. 2008;9(8):866–72.

    Article  PubMed  CAS  Google Scholar 

  36. Chao LK, Liao PC, Ho CL, Wang EI, Chuang CC, Chiu HW, Hung LB, Hua KF. Anti-inflammatory bioactivities of honokiol through inhibition of protein kinase C, mitogen-activated protein kinase, and the NF-kappaB pathway to reduce LPS-induced TNFalpha and NO expression. J Agric Food Chem. 2010;58(6):3472–8.

    Article  PubMed  CAS  Google Scholar 

  37. Su SC, Hua KF, Lee H, Chao LK, Tan SK, Lee H, Yang SF, Hsu HY. LTA and LPS mediated activation of protein kinases in the regulation of inflammatory cytokines expression in macrophages. Clin Chim Acta. 2006;374(1–2):106–15.

    Article  PubMed  CAS  Google Scholar 

  38. Akira S, Takeda K. Toll-like receptor signalling. Nat Rev Immunol. 2004;4(7):499–511.

    Article  PubMed  CAS  Google Scholar 

  39. Kuo CC, Lin WT, Liang CM, Liang SM. Class I and III phosphatidylinositol 3′-kinase play distinct roles in TLR signaling pathway. J Immunol. 2006;176(10):5943–9.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Science Council, Taiwan: contract grant numbers: NSC 98-2320-B-039-003-MY2 (KF Hua); 100-2313-B-197-002 (KF Hua).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kuo-Feng Hua.

Additional information

Responsible Editor: Graham Wallace.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liao, PC., Chao, L.K., Chou, JC. et al. Lipopolysaccharide/adenosine triphosphate-mediated signal transduction in the regulation of NLRP3 protein expression and caspase-1-mediated interleukin-1β secretion. Inflamm. Res. 62, 89–96 (2013). https://doi.org/10.1007/s00011-012-0555-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00011-012-0555-2

Keywords

Navigation