Inflammation Research

, Volume 61, Issue 10, pp 1093–1100 | Cite as

Cyclic compression-induced p38 activation and subsequent MMP13 expression requires Rho/ROCK activity in bovine cartilage explants

  • Koichi Nakagawa
  • Takeshi Teramura
  • Toshiyuki Takehara
  • Yuta Onodera
  • Chiaki Hamanishi
  • Masao Akagi
  • Kanji Fukuda
Original Research Paper



Excessive mechanical stress on the cartilage causes the degradation of the matrix, leading to the osteoarthritis (OA). Matrix metalloproteinases 13 (MMP13) is a major catalytic enzyme in OA and p38 plays an important role in its induction. However, precise pathway inducing p38 activation has not been elucidated. We hypothesized here that the small GTPase Rho and its effector ROCK might function in upper part of the mechanical stress-induced matrix degeneration pathway.


Bovine metacarpal phalangeal articular cartilage explants were loaded with 1 MPa dynamic compression for 6 h with or without a ROCK specific inhibitor Y27632 or/and a p38 specific inhibitor SB202190. Then p38 phosphorylation and MMP13 expression were assessed by western blot or/and quantitative RT-PCR. Rho-activity was measured by pull-down assay using glutathione S-transferase fusion protein of Rho binding domain.


Cyclic compression caused Rho activation, p38 phosphorylation and MMP13 expression. Both Y27632 and SB202190 were found to block the mechanical stress-enhanced p38 phosphorylation and subsequent MMP13 expression.


The present results show that p38 phosphorylation and MMP13 expression are regulated by Rho/ROCK activation, and support the potential novel pathway that Rho/ROCK is in the upper part of the mechanical stress-induced matrix degeneration cascade in cartilage comprised of p38 and MMP13.


Mechanical stress Osteoarthritis Matrix metalloproteinase Cartilage Rho/ROCK 



We gratefully acknowledge Ms. Naomi Backes Kamimura, Department of Biology-Oriented Science and Technology, Kinki University, for English editing. We also thank Ms. Kanae Shigi and Ms. Naoko Ohoshi for excellent technical assistance.

Supplementary material

11_2012_500_MOESM1_ESM.tif (3.4 mb)
Supplement 1. Other ROCK inhibitor fasudil also blocked the cyclic compression induced p38 phosphorylation and MMP13 expression. A. Western blot analysis for p38 and MMP13. B. qRT-PCR analysis for MMP13. Both SB202190 or fasudil (ROCK inhibitor) supplementation during compression treatment blocked mechanical stress induced MMP13 expression. Asterisk means significant differences at p < 0.05. All experimental groups included the vehicle of SB202190 (DMSO) at same concentration. Bars show the mean score of three independent experiments and bars depict S.D. (TIFF 3435 kb)


  1. 1.
    Gelber AC, Hochberg MC, Mead LA, Wang NY, Wigley FM, Klag MJ. Joint injury in young adults and risk for subsequent knee and hip osteoarthritis. Ann Intern Med. 2000;133:321–8.PubMedGoogle Scholar
  2. 2.
    Lee JH, Fitzgerald JB, Dimicco MA, Grodzinsky AJ. Mechanical injury of cartilage explants causes specific time-dependent changes in chondrocyte gene expression. Arthritis Rheum. 2005;52:2386–95.PubMedCrossRefGoogle Scholar
  3. 3.
    Setton LA, Mow VC, Muller FJ, Pita JC, Howell DS. Mechanical properties of canine articular cartilage are significantly altered following transection of the anterior cruciate ligament. J Orthop Res. 1994;12:451–63.PubMedCrossRefGoogle Scholar
  4. 4.
    Piscoya JL, Fermor B, Kraus VB, Stabler TV, Guilak F. The influence of mechanical compression on the induction of osteoarthritis-related biomarkers in articular cartilage explants. Osteoarthr Cartil. 2005;13:1092–9.PubMedCrossRefGoogle Scholar
  5. 5.
    Messier SP. Osteoarthritis of the knee and associated factors of age and obesity: effects on gait. Med Sci Sports Exerc. 1994;26:1446–52.PubMedGoogle Scholar
  6. 6.
    Guilak F, Meyer BC, Ratcliffe A, Mow VC. The effects of matrix compression on proteoglycan metabolism in articular cartilage explants. Osteoarthr Cartil. 1994;2:91–101.PubMedCrossRefGoogle Scholar
  7. 7.
    Sui Y, Lee JH, DiMicco MA, Vanderploeg EJ, Blake SM, Hung HH, et al. Mechanical injury potentiates proteoglycan catabolism induced by interleukin-6 with soluble interleukin-6 receptor and tumor necrosis factor alpha in immature bovine and adult human articular cartilage. Arthritis Rheum. 2009;60:2985–96.PubMedCrossRefGoogle Scholar
  8. 8.
    Tomiyama T, Fukuda K, Yamazaki K, Hashimoto K, Ueda H, Mori S, et al. Cyclic compression loaded on cartilage explants enhances the production of reactive oxygen species. J Rheumatol. 2007;34:556–62.PubMedGoogle Scholar
  9. 9.
    Moldovan F, Pelletier JP, Hambor J, Cloutier JM, Martel-Pelletier J. Collagenase-3 (matrix metalloprotease 13) is preferentially localized in the deep layer of human arthritic cartilage in situ: in vitro mimicking effect by transforming growth factor beta. Arthritis Rheum. 1997;40:1653–61.PubMedCrossRefGoogle Scholar
  10. 10.
    van den Berg WB. Osteoarthritis year 2010 in review: pathomechanisms. Osteoarthr Cartil. 2011;19:338–41.PubMedCrossRefGoogle Scholar
  11. 11.
    Mengshol JA, Vincenti MP, Coon CI, Barchowsky A, Brinckerhoff CE. Interleukin-1 induction of collagenase 3 (matrix metalloproteinase 13) gene expression in chondrocytes requires p38, c-Jun N-terminal kinase, and nuclear factor kappaB: differential regulation of collagenase 1 and collagenase 3. Arthritis Rheum. 2000;43:801–11.PubMedCrossRefGoogle Scholar
  12. 12.
    Pei Y, Harvey A, Yu XP, Chandrasekhar S, Thirunavukkarasu K. Differential regulation of cytokine-induced MMP-1 and MMP-13 expression by p38 kinase inhibitors in human chondrosarcoma cells: potential role of Runx2 in mediating p38 effects. Osteoarthr Cartil. 2006;14:749–58.PubMedCrossRefGoogle Scholar
  13. 13.
    Julovi SM, Ito H, Nishitani K, Jackson CJ, Nakamura T. Hyaluronan inhibits matrix metalloproteinase-13 in human arthritic chondrocytes via CD44 and P38. J Orthop Res. 2011;29:258–64.PubMedCrossRefGoogle Scholar
  14. 14.
    Kawamura S, Miyamoto S, Brown JH. Initiation and transduction of stretch-induced RhoA and Rac1 activation through caveolae: cytoskeletal regulation of ERK translocation. J Biol Chem. 2003;278(33):31111–7. doi: 10.1074/jbc.M300725200.PubMedCrossRefGoogle Scholar
  15. 15.
    Van Aelst L, D’Souza-Schorey C. Rho GTPases and signaling networks. Genes Dev. 1997;11:2295–322.PubMedCrossRefGoogle Scholar
  16. 16.
    Etienne-Manneville S, Hall A. Rho GTPases in cell biology. Nature. 2002;420:629–35.PubMedCrossRefGoogle Scholar
  17. 17.
    Ordonez-Moran P, Larriba MJ, Palmer HG, Valero RA, Barbachano A, Dunach M, et al. RhoA-ROCK and p38MAPK-MSK1 mediate vitamin D effects on gene expression, phenotype, and Wnt pathway in colon cancer cells. J Cell Biol. 2008;183:697–710.PubMedCrossRefGoogle Scholar
  18. 18.
    Wang J, Fan J, Laschinger C, Arora PD, Kapus A, Seth A, et al. Smooth muscle actin determines mechanical force-induced p38 activation. J Biol Chem. 2005;280:7273–84.PubMedCrossRefGoogle Scholar
  19. 19.
    Miki Y, Teramura T, Tomiyama T, Onodera Y, Matsuoka T, Fukuda K, et al. Hyaluronan reversed proteoglycan synthesis inhibited by mechanical stress: possible involvement of antioxidant effect. Inflamm Res. 2010;59:471–7.PubMedCrossRefGoogle Scholar
  20. 20.
    De Croos JN, Roughley PJ, Kandel RA. Improved bioengineered cartilage tissue formation following cyclic compression is dependent on upregulation of MT1-MMP. J Orthop Res. 2010;28:921–7.PubMedGoogle Scholar
  21. 21.
    Sanchez C, Pesesse L, Gabay O, Delcour JP, Msika P, Baudouin C, et al. Regulation of subchondral bone osteoblast metabolism by cyclic compression. Arthritis Rheum. 2012;64:1193–203.PubMedCrossRefGoogle Scholar
  22. 22.
    Dmitrieva NI, Bulavin DV, Fornace AJ Jr, Burg MB. Rapid activation of G2/M checkpoint after hypertonic stress in renal inner medullary epithelial (IME) cells is protective and requires p38 kinase. Proc Natl Acad Sci USA. 2002;99:184–9.PubMedCrossRefGoogle Scholar
  23. 23.
    Tew SR, Hardingham TE. Regulation of SOX9 mRNA in human articular chondrocytes involving p38 MAPK activation and mRNA stabilization. J Biol Chem. 2006;281:39471–9.PubMedCrossRefGoogle Scholar
  24. 24.
    Namdari S, Wei L, Moore D, Chen Q. Reduced limb length and worsened osteoarthritis in adult mice after genetic inhibition of p38 MAP kinase activity in cartilage. Arthritis Rheum. 2008;58:3520–9.PubMedCrossRefGoogle Scholar
  25. 25.
    Sondergaard BC, Schultz N, Madsen SH, Bay-Jensen AC, Kassem M, Karsdal MA. MAPKs are essential upstream signaling pathways in proteolytic cartilage degradation–divergence in pathways leading to aggrecanase and MMP-mediated articular cartilage degradation. Osteoarthr Cartil. 2010;18:279–88.PubMedCrossRefGoogle Scholar
  26. 26.
    Joos H, Albrecht W, Laufer S, Brenner RE. Influence of p38MAPK inhibition on IL-1beta-stimulated human chondrocytes: a microarray approach. Int J Mol Med. 2009;23:685–93.PubMedGoogle Scholar
  27. 27.
    Ziegler N, Alonso A, Steinberg T, Woodnutt D, Kohl A, Mussig E, et al. Mechano-transduction in periodontal ligament cells identifies activated states of MAP-kinases p42/44 and p38-stress kinase as a mechanism for MMP-13 expression. BMC Cell Biol. 2010;11:10–24.PubMedCrossRefGoogle Scholar
  28. 28.
    Sarasa-Renedo A, Tunc-Civelek V, Chiquet M. Role of RhoA/ROCK-dependent actin contractility in the induction of tenascin-C by cyclic tensile strain. Exp Cell Res. 2006;312:1361–70.PubMedCrossRefGoogle Scholar
  29. 29.
    Teramura T, Takehara T, Onodera Y, Nakagawa K, Hamanishi C, Fukuda K. Mechanical stimulation of cyclic tensile strain induces reduction of pluripotent related gene expressions via activation of Rho/ROCK and subsequent decreasing of AKT phosphorylation in human induced pluripotent stem cells. Biochem Biophys Res Commun. 2012;417:836–41.PubMedCrossRefGoogle Scholar
  30. 30.
    Haudenschild DR, Nguyen B, Chen J, D’Lima DD, Lotz MK. Rho kinase-dependent CCL20 induced by dynamic compression of human chondrocytes. Arthritis Rheum. 2008;58:2735–42.PubMedCrossRefGoogle Scholar
  31. 31.
    Pargellis C, Regan J. Inhibitors of p38 mitogen-activated protein kinase for the treatment of rheumatoid arthritis. Curr Opin Investig Drugs. 2003;4(5):566–71.PubMedGoogle Scholar
  32. 32.
    Brown KK, Heitmeyer SA, Hookfin EB, Hsieh L, Buchalova M, Taiwo YO, et al. P38 MAP kinase inhibitors as potential therapeutics for the treatment of joint degeneration and pain associated with osteoarthritis. J Inflamm (Lond). 2008;5:22–30.CrossRefGoogle Scholar
  33. 33.
    Masumoto A, Hirooka Y, Shimokawa H, Hironaga K, Setoguchi S, Takeshita A. Possible involvement of Rho-kinase in the pathogenesis of hypertension in humans. Hypertension. 2001;38:1307–10.PubMedCrossRefGoogle Scholar
  34. 34.
    Kishi T, Hirooka Y, Masumoto A, Ito K, Kimura Y, Inokuchi K, et al. Rho-kinase inhibitor improves increased vascular resistance and impaired vasodilation of the forearm in patients with heart failure. Circulation. 2005;111:2741–7.PubMedCrossRefGoogle Scholar
  35. 35.
    Beier F, Loeser RF. Biology and pathology of Rho GTPase, PI-3 kinase-Akt, and MAP kinase signaling pathways in chondrocytes. J Cell Biochem. 2010;110:573–80.PubMedCrossRefGoogle Scholar
  36. 36.
    Novakofski K, Boehm A, Fortier L. The small GTPase Rho mediates articular chondrocyte phenotype and morphology in response to interleukin-1alpha and insulin-like growth factor-I. J Orthop Res. 2009;27:58–64.PubMedCrossRefGoogle Scholar
  37. 37.
    Appleton CT, Usmani SE, Mort JS, Beier F. Rho/ROCK and MEK/ERK activation by transforming growth factor-alpha induces articular cartilage degradation. Lab Invest. 2010;90:20–30.PubMedCrossRefGoogle Scholar
  38. 38.
    Woods A, Beier F. RhoA/ROCK signaling regulates chondrogenesis in a context-dependent manner. J Biol Chem. 2006;281:13134–40.PubMedCrossRefGoogle Scholar
  39. 39.
    Woods A, Wang G, Beier F. RhoA/ROCK signaling regulates Sox9 expression and actin organization during chondrogenesis. J Biol Chem. 2005;280:11626–34.PubMedCrossRefGoogle Scholar
  40. 40.
    Demarteau O, Wendt D, Braccini A, Jakob M, Schafer D, Heberer M, et al. Dynamic compression of cartilage constructs engineered from expanded human articular chondrocytes. Biochem Biophys Res Commun. 2003;310:580–8.PubMedCrossRefGoogle Scholar
  41. 41.
    Waldman SD, Couto DC, Grynpas MD, Pilliar RM, Kandel RA. A single application of cyclic loading can accelerate matrix deposition and enhance the properties of tissue-engineered cartilage. Osteoarthr Cartil. 2006;14:323–30.PubMedCrossRefGoogle Scholar
  42. 42.
    Waldman SD, Spiteri CG, Grynpas MD, Pilliar RM, Kandel RA. Long-term intermittent compressive stimulation improves the composition and mechanical properties of tissue-engineered cartilage. Tissue Eng. 2004;10:1323–31.PubMedGoogle Scholar
  43. 43.
    Takeshita N, Yoshimi E, Hatori C, Kumakura F, Seki N, Shimizu Y. Alleviating effects of AS1892802, a Rho kinase inhibitor, on osteoarthritic disorders in rodents. J Pharmacol Sci. 2011;115:481–9.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Basel AG 2012

Authors and Affiliations

  • Koichi Nakagawa
    • 1
  • Takeshi Teramura
    • 2
  • Toshiyuki Takehara
    • 2
  • Yuta Onodera
    • 2
  • Chiaki Hamanishi
    • 1
  • Masao Akagi
    • 1
  • Kanji Fukuda
    • 1
    • 2
    • 3
  1. 1.Department of Orthopaedic SurgeryKinki University Faculty of MedicineOsakaJapan
  2. 2.Division of Cell Biology for Regenerative Medicine, Institute of Advanced Clinical MedicineKinki University Faculty of MedicineOsakaJapan
  3. 3.Department of Rehabilitation MedicineKinki University Faculty of MedicineOsakaJapan

Personalised recommendations