Inflammation Research

, Volume 61, Issue 9, pp 967–976 | Cite as

Omega-6 docosapentaenoic acid-derived resolvins and 17-hydroxydocosahexaenoic acid modulate macrophage function and alleviate experimental colitis

  • Cheng-Ying Chiu
  • Beate Gomolka
  • Cordula Dierkes
  • Nora R. Huang
  • Maik Schroeder
  • Martin Purschke
  • Dieter Manstein
  • Bindi Dangi
  • Karsten H. Weylandt
Original Research Paper



Enzymatically oxygenated lipid products derived from omega-3 and omega-6 fatty acids play an important role in inflammation dampening. This study examined the anti-inflammatory effects of n-6 docosapentaenoic acid-derived (17S)-hydroxy-docosapentaenoic acid (17-HDPAn-6) and (10,17S)-dihydroxy-docosapentaenoic acid (10,17-HDPAn-6) as well as n-3 docosahexaenoic acid-derived 17(R/S)-hydroxy-docosahexaenoic acid (17-HDHA).

Materials and methods

The effects of 17-HDPAn-6, 10,17-HDPAn-6 or 17-HDHA on activity and M1/M2 polarization of murine macrophage cell line RAW 264.7 were examined by phagocytosis assay and real-time PCR. To assess anti-inflammatory effects in vivo, dextran sodium sulfate (DSS) colitis was induced in mice treated with 17-HDPAn-6, 10,17-HDPAn-6, 17-HDHA or NaCl.


Our results show that 17-HDPAn-6, 10,17-HDPAn-6 and 17-HDHA increase phagocytosis in macrophages in vitro and promote polarization towards the anti-inflammatory M2 phenotype with decreased gene expression of TNF-α and inducible Nitric oxide synthase and increased expression of the chemokine IL-1 receptor antagonist and the Scavenger receptor Type A. Intraperitoneal treatment with 17-HDPAn-6, 10,17-HDPAn-6, or 17-HDHA alleviated DSS-colitis and significantly improved body weight loss, colon epithelial damage, and macrophage infiltration.


These results suggest that DPAn-6-derived 17-HDPAn-6 and 10,17-HDPAn-6 as well as the DHA-derived 17-HDHA have inflammation-dampening and resolution-promoting effects that could be used to treat inflammatory conditions such as inflammatory bowel disease.


PUFA 17-HDHA 17-HDPA 10,17-HDPA Colitis Lipid mediators 



17-HDPA and 10,17-HDPA were provided by Martek Biosciences (a division of DSM Nutritional Products). K.H.W. is supported by the German Research Fund (DFG) and Charité intramural research funds. Part of the research work presented here was funded by Martek Biosciences. C.Y.C. was supported by a grant from the German Academic Exchange Service (Biomedical Sciences Exchange Program).


  1. 1.
    Serhan CN, Brain SD, Buckley CD, Gilroy DW, Haslett C, O’Neill LA, et al. Resolution of inflammation: state of the art, definitions and terms. FASEB J. 2007;21:325–32.PubMedCrossRefGoogle Scholar
  2. 2.
    Serhan CN, Savill J. Resolution of inflammation: the beginning programs the end. Nat Immunol. 2005;6:1191–7.PubMedCrossRefGoogle Scholar
  3. 3.
    Campbell EL, MacManus CF, Kominsky DJ, Keely S, Glover LE, Bowers BE, et al. Resolvin E1-induced intestinal alkaline phosphatase promotes resolution of inflammation through LPS detoxification. Proc Natl Acad Sci USA. 2010;107:14298–303.PubMedCrossRefGoogle Scholar
  4. 4.
    Gonzalez-Periz A, Planaguma A, Gronert K, Miquel R, Lopez-Parra M, Titos E, et al. Docosahexaenoic acid (DHA) blunts liver injury by conversion to protective lipid mediators: protectin D1 and 17S-hydroxy-DHA. FASEB J. 2006;20:2537–9.PubMedCrossRefGoogle Scholar
  5. 5.
    Haworth O, Cernadas M, Yang R, Serhan CN, Levy BD. Resolvin E1 regulates interleukin 23, interferon-gamma and lipoxin A4 to promote the resolution of allergic airway inflammation. Nat Immunol. 2008;9:873–9.PubMedCrossRefGoogle Scholar
  6. 6.
    Ho KJ, Spite M, Owens CD, Lancero H, Kroemer AH, Pande R, et al. Aspirin-triggered lipoxin and resolvin E1 modulate vascular smooth muscle phenotype and correlate with peripheral atherosclerosis. Am J Pathol. 2010;177:2116–23.PubMedCrossRefGoogle Scholar
  7. 7.
    Lima-Garcia J, Dutra R, da Silva K, Motta E, Campos M, Calixto J. The precursor of resolvin D series and aspirin-triggered resolvin D1 display anti-hyperalgesic properties in adjuvant-induced arthritis in rats. Br J Pharmacol. 2011;164(2):278–93.PubMedCrossRefGoogle Scholar
  8. 8.
    Zhou M, Chen B, Sun H, Deng Z, Andersson R, Zhang Q. The protective effects of Lipoxin A4 during the early phase of severe acute pancreatitis in rats. Scand J Gastroenterol. 2011;46:211–9.PubMedCrossRefGoogle Scholar
  9. 9.
    Dangi B, Obeng M, Nauroth JM, Chung G, Bailey-Hall E, Hallenbeck T, et al. Metabolism and biological production of resolvins derived from docosapentaenoic acid (DPAn-6). Biochem Pharmacol. 2010;79:251–60.PubMedCrossRefGoogle Scholar
  10. 10.
    Dangi B, Obeng M, Nauroth JM, Teymourlouei M, Needham M, Raman K, et al. Biogenic synthesis, purification, and chemical characterization of anti-inflammatory resolvins derived from docosapentaenoic acid (DPAn-6). J Biol Chem. 2009;284:14744–59.PubMedCrossRefGoogle Scholar
  11. 11.
    Mantovani A, Sica A, Sozzani S, Allavena P, Vecchi A, Locati M. The chemokine system in diverse forms of macrophage activation and polarization. Trends Immunol. 2004;25:677–86.PubMedCrossRefGoogle Scholar
  12. 12.
    Martinez FO, Helming L, Gordon S. Alternative activation of macrophages: an immunologic functional perspective. Annu Rev Immunol. 2009;27:451–83.PubMedCrossRefGoogle Scholar
  13. 13.
    Goerdt S, Politz O, Schledzewski K, Birk R, Gratchev A, Guillot P, et al. Alternative versus classical activation of macrophages. Pathobiology. 1999;67:222–6.PubMedCrossRefGoogle Scholar
  14. 14.
    Goerdt S, Orfanos CE. Other functions, other genes: alternative activation of antigen-presenting cells. Immunity. 1999;10:137–42.PubMedCrossRefGoogle Scholar
  15. 15.
    Mosser DM. The many faces of macrophage activation. J Leukoc Biol. 2003;73:209–12.PubMedCrossRefGoogle Scholar
  16. 16.
    Xavier RJ, Podolsky DK. Unravelling the pathogenesis of inflammatory bowel disease. Nature. 2007;448:427–34.PubMedCrossRefGoogle Scholar
  17. 17.
    Baumgart DC, Carding SR. Inflammatory bowel disease: cause and immunobiology. Lancet. 2007;369:1627–40.PubMedCrossRefGoogle Scholar
  18. 18.
    Barrett JC, Hansoul S, Nicolae DL, Cho JH, Duerr RH, Rioux JD, et al. Genome-wide association defines more than 30 distinct susceptibility loci for Crohn’s disease. Nat Genet. 2008;40:955–62.PubMedCrossRefGoogle Scholar
  19. 19.
    Madsen KL, Doyle JS, Tavernini MM, Jewell LD, Rennie RP, Fedorak RN. Antibiotic therapy attenuates colitis in interleukin 10 gene-deficient mice. Gastroenterology. 2000;118:1094–105.PubMedCrossRefGoogle Scholar
  20. 20.
    Heinsbroek SE, Gordon S. The role of macrophages in inflammatory bowel diseases. Expert Rev Mol Med. 2009;11:e14.PubMedCrossRefGoogle Scholar
  21. 21.
    Arita M, Yoshida M, Hong S, Tjonahen E, Glickman JN, Petasis NA, et al. Resolvin E1, an endogenous lipid mediator derived from omega-3 eicosapentaenoic acid, protects against 2,4,6-trinitrobenzene sulfonic acid-induced colitis. Proc Natl Acad Sci USA. 2005;102:7671–6.PubMedCrossRefGoogle Scholar
  22. 22.
    Fiorucci S, Wallace JL, Mencarelli A, Distrutti E, Rizzo G, Farneti S, et al. A beta-oxidation-resistant lipoxin A4 analog treats hapten-induced colitis by attenuating inflammation and immune dysfunction. Proc Natl Acad Sci USA. 2004;101:15736–41.PubMedCrossRefGoogle Scholar
  23. 23.
    Gewirtz AT, Collier-Hyams LS, Young AN, Kucharzik T, Guilford WJ, Parkinson JF, et al. Lipoxin a4 analogs attenuate induction of intestinal epithelial proinflammatory gene expression and reduce the severity of dextran sodium sulfate-induced colitis. J Immunol. 2002;168:5260–7.PubMedGoogle Scholar
  24. 24.
    Mangino MJ, Brounts L, Harms B, Heise C. Lipoxin biosynthesis in inflammatory bowel disease. Prostaglandins Other Lipid Mediat. 2006;79:84–92.PubMedCrossRefGoogle Scholar
  25. 25.
    Bento AF, Claudino RF, Dutra RC, Marcon R, Calixto JB. Omega-3 Fatty Acid-Derived Mediators 17(R)-Hydroxy Docosahexaenoic Acid, Aspirin-Triggered Resolvin D1 and Resolvin D2 Prevent Experimental Colitis in Mice. J Immunol. 2011;187(4):1957–69.PubMedCrossRefGoogle Scholar
  26. 26.
    Ishida T, Yoshida M, Arita M, Nishitani Y, Nishiumi S, Masuda A, et al. Resolvin E1, an endogenous lipid mediator derived from eicosapentaenoic acid, prevents dextran sulfate sodium-induced colitis. Inflamm Bowel Dis. 2010;16:87–95.PubMedGoogle Scholar
  27. 27.
    Li J, Scherl A, Medina F, Frank PG, Kitsis RN, Tanowitz HB, et al. Impaired phagocytosis in caveolin-1 deficient macrophages. Cell Cycle. 2005;4:1599–607.PubMedCrossRefGoogle Scholar
  28. 28.
    Wan CP, Park CS, Lau BH. A rapid and simple microfluorometric phagocytosis assay. J Immunol Methods. 1993;162:1–7.PubMedCrossRefGoogle Scholar
  29. 29.
    Pfaffl MW. A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res. 2001;29:e45.PubMedCrossRefGoogle Scholar
  30. 30.
    Becker C, Fantini MC, Neurath MF. High resolution colonoscopy in live mice. Nat Protoc. 2006;1:2900–4.PubMedCrossRefGoogle Scholar
  31. 31.
    Dieleman LA, Palmen MJ, Akol H, Bloemena E, Pena AS, Meuwissen SG, et al. Chronic experimental colitis induced by dextran sulphate sodium (DSS) is characterized by Th1 and Th2 cytokines. Clin Exp Immunol. 1998;114:385–91.PubMedCrossRefGoogle Scholar
  32. 32.
    Prescott D, McKay DM. Aspirin-triggered lipoxin enhances macrophage phagocytosis of bacteria while inhibiting inflammatory cytokine production. Am J Physiol Gastrointest Liver Physiol. 2011;301(3):G487–97.PubMedCrossRefGoogle Scholar
  33. 33.
    Godson C, Mitchell S, Harvey K, Petasis NA, Hogg N, Brady HR. Cutting edge: lipoxins rapidly stimulate nonphlogistic phagocytosis of apoptotic neutrophils by monocyte-derived macrophages. J Immunol. 2000;164:1663–7.PubMedGoogle Scholar
  34. 34.
    Mitchell S, Thomas G, Harvey K, Cottell D, Reville K, Berlasconi G, et al. Lipoxins, aspirin-triggered epi-lipoxins, lipoxin stable analogues, and the resolution of inflammation: stimulation of macrophage phagocytosis of apoptotic neutrophils in vivo. J Am Soc Nephrol. 2002;13:2497–507.PubMedCrossRefGoogle Scholar
  35. 35.
    Ahern PP, Izcue A, Maloy KJ, Powrie F. The interleukin-23 axis in intestinal inflammation. Immunol Rev. 2008;226:147–59.PubMedCrossRefGoogle Scholar
  36. 36.
    Brandtzaeg P, Carlsen HS, Halstensen TS. The B-cell system in inflammatory bowel disease. Adv Exp Med Biol. 2006;579:149–67.PubMedCrossRefGoogle Scholar
  37. 37.
    Coombes JL, Powrie F. Dendritic cells in intestinal immune regulation. Nat Rev Immunol. 2008;8:435–46.PubMedCrossRefGoogle Scholar
  38. 38.
    Hugot JP, Chamaillard M, Zouali H, Lesage S, Cezard JP, Belaiche J, et al. Association of NOD2 leucine-rich repeat variants with susceptibility to Crohn’s disease. Nature. 2001;411:599–603.PubMedCrossRefGoogle Scholar
  39. 39.
    Kasuga K, Yang R, Porter TF, Agrawal N, Petasis NA, Irimia D, et al. Rapid appearance of resolvin precursors in inflammatory exudates: novel mechanisms in resolution. J Immunol. 2008;181:8677–87.PubMedGoogle Scholar
  40. 40.
    Serhan CN, Petasis NA. Resolvins and protectins in inflammation resolution. Chem Rev. 2011;111(10):5922–43.PubMedCrossRefGoogle Scholar
  41. 41.
    Serhan CN, Yang R, Martinod K, Kasuga K, Pillai PS, Porter TF, et al. Maresins: novel macrophage mediators with potent antiinflammatory and proresolving actions. J Exp Med. 2009;206:15–23.PubMedCrossRefGoogle Scholar
  42. 42.
    Hong S, Gronert K, Devchand PR, Moussignac RL, Serhan CN. Novel docosatrienes and 17S-resolvins generated from docosahexaenoic acid in murine brain, human blood, and glial cells. Autacoids in anti-inflammation. J Biol Chem. 2003;278:14677–87.PubMedCrossRefGoogle Scholar
  43. 43.
    Serhan CN, Clish CB, Brannon J, Colgan SP, Chiang N, Gronert K. Novel functional sets of lipid-derived mediators with antiinflammatory actions generated from omega-3 fatty acids via cyclooxygenase 2-nonsteroidal antiinflammatory drugs and transcellular processing. J Exp Med. 2000;192:1197–204.PubMedCrossRefGoogle Scholar
  44. 44.
    Serhan CN, Hamberg M, Samuelsson B. Trihydroxytetraenes: a novel series of compounds formed from arachidonic acid in human leukocytes. Biochem Biophys Res Commun. 1984;118:943–9.PubMedCrossRefGoogle Scholar
  45. 45.
    Reville K, Crean JK, Vivers S, Dransfield I, Godson C. Lipoxin A4 redistributes myosin IIA and Cdc42 in macrophages: implications for phagocytosis of apoptotic leukocytes. J Immunol. 2006;176:1878–88.PubMedGoogle Scholar
  46. 46.
    Krishnamoorthy S, Recchiuti A, Chiang N, Yacoubian S, Lee CH, Yang R, et al. Resolvin D1 binds human phagocytes with evidence for proresolving receptors. Proc Natl Acad Sci USA. 2010;107:1660–5.PubMedCrossRefGoogle Scholar
  47. 47.
    Gordon S, Martinez FO. Alternative activation of macrophages: mechanism and functions. Immunity. 2010;32:593–604.PubMedCrossRefGoogle Scholar
  48. 48.
    Hunter MM, Wang A, Parhar KS, Johnston MJ, Van Rooijen N, Beck PL, et al. In vitro-derived alternatively activated macrophages reduce colonic inflammation in mice. Gastroenterology. 2010;138:1395–405.PubMedCrossRefGoogle Scholar
  49. 49.
    Weisser SB, Brugger HK, Voglmaier NS, McLarren KW, van Rooijen N, Sly LM. SHIP-deficient, alternatively activated macrophages protect mice during DSS-induced colitis. J Leukoc Biol. 2011;90:483–92.PubMedCrossRefGoogle Scholar
  50. 50.
    Andersson P, Serhan CN, Petasis NA, Palmblad J. Interactions between lipoxin A4, the stable analogue 16-phenoxy-lipoxin A4 and leukotriene B4 in cytokine generation by human monocytes. Scand J Immunol. 2004;60:249–56.PubMedCrossRefGoogle Scholar
  51. 51.
    Elson CO, Sartor RB, Tennyson GS, Riddell RH. Experimental models of inflammatory bowel disease. Gastroenterology. 1995;109:1344–67.PubMedCrossRefGoogle Scholar
  52. 52.
    Okayasu I, Hatakeyama S, Yamada M, Ohkusa T, Inagaki Y, Nakaya R. A novel method in the induction of reliable experimental acute and chronic ulcerative colitis in mice. Gastroenterology. 1990;98:694–702.PubMedGoogle Scholar
  53. 53.
    Blumberg RS, Saubermann LJ, Strober W. Animal models of mucosal inflammation and their relation to human inflammatory bowel disease. Curr Opin Immunol. 1999;11:648–56.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Basel AG 2012

Authors and Affiliations

  • Cheng-Ying Chiu
    • 1
    • 2
  • Beate Gomolka
    • 1
  • Cordula Dierkes
    • 1
  • Nora R. Huang
    • 1
    • 2
  • Maik Schroeder
    • 1
  • Martin Purschke
    • 3
  • Dieter Manstein
    • 3
  • Bindi Dangi
    • 4
  • Karsten H. Weylandt
    • 1
    • 2
    • 5
  1. 1.Department of Hepatology, Gastroenterology and EndocrinologyCharité University Medicine BerlinBerlinGermany
  2. 2.Laboratory for Lipid Medicine and TechnologyMassachusetts General Hospital, Harvard Medical SchoolBostonUSA
  3. 3.Wellman Center of PhotomedicineMassachusetts General Hospital, Harvard Medical SchoolBostonUSA
  4. 4.DSM Nutritional ProductsColumbiaUSA
  5. 5.Med. Klinik m. S. Gastroenterologie and HepatologieCharité Campus Virchow HospitalBerlinGermany

Personalised recommendations